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Quantification of extracellular proteins, 
protein complexes and mRNAs in single cells 
by proximity sequencing

Luke Vistain1,2,6, Hoang Van Phan1,2,6, Bijentimala Keisham    1,2, 
Christian Jordi    3, Mengjie Chen    4,5, Sai T. Reddy    3 & Savaş Tay    1,2 

We present proximity sequencing (Prox-seq) for simultaneous 
measurement of proteins, protein complexes and mRNAs in thousands of 
single cells. Prox-seq combines proximity ligation assay with single-cell 
sequencing to measure proteins and their complexes from all pairwise 
combinations of targeted proteins, providing quadratically scaled 
multiplexing. We validate Prox-seq and analyze a mixture of T cells and 
B cells to show that it accurately identifies these cell types and detects 
well-known protein complexes. Next, by studying human peripheral 
blood mononuclear cells, we discover that naïve CD8+ T cells display the 
protein complex CD8–CD9. Finally, we study protein interactions during 
Toll-like receptor (TLR) signaling in human macrophages. We observe the 
formation of signal-specific protein complexes, find CD36 co-receptor 
activity and additive signal integration under lipopolysaccharide (TLR4) 
and Pam2CSK4 (TLR2) stimulation, and show that quantification of protein 
complexes identifies signaling inputs received by macrophages. Prox-seq 
provides access to an untapped measurement modality for single-cell 
phenotyping and can discover uncharacterized protein interactions in 
different cell types.

Singe-cell measurements have expanded our understanding of many 
aspects of cellular function, such as enabling identification of rare cell 
subsets, tracking transient cellular states, and incorporating noise and 
variability into our understanding of cellular phenotypes1–3. These 
phenotypes are emergent properties of both biomolecules and their 
interactions. Many biological functions such as signaling, differentia-
tion, development and cellular decision-making are driven by changes 
in the arrangement and interaction of protein molecules. Particularly, 
signaling is primarily mediated by the formation and dissociation of 
protein complexes, and thus cannot be studied from mRNA expression 
or protein expression alone. Therefore, the ability to measure individual 

proteins and their complexes at the single-cell level is among the most 
informative approaches for understanding cellular function. Despite 
the apparent value, there are major hurdles in performing highly mul-
tiplexed measurements of single-cell proteins and their complexes, 
because the number of pairwise complexes a protein can form scales 
quadratically with the number of proteins that is being measured. This 
demands a method that can encode a large number of outputs, as each 
measurement must enable identification of both the protein of interest 
and other proteins in its proximity.

Motivated by this unmet need in multi-omic analysis of single cells, 
we developed a single-cell assay called Prox-seq and demonstrated an 
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Results
Prox-seq measures proteins, protein complexes and mRNA 
simultaneously
We first sought to show that PLA products can be measured using 
scRNA-seq, and that the PLA data display cell-type-specific differences. 
Eleven protein targets were selected corresponding to T cell and B cell 
markers (Supplementary Table 1). Prox-seq probes were made for these 
targets along with two isotype controls. This panel was applied to a 
mixture of T cells ( Jurkat) and B cells (Raji), which was then analyzed 
using the Drop-seq pipeline10 (Supplementary Table 2).

Prox-seq measurements showed that cells could be accurately 
clustered using mRNAs, proteins or total PLA products (Fig. 1e–h). The 
protein abundance is estimated by taking the total number of times the 
protein target’s DNA barcode is detected, from either Prox-seq probe 
A or B (Supplementary Methods). We found that clustering of cells by 
mRNA or protein identified the same cell types (Fig. 1e,f,h). Similarly, 
cells could be clustered using all 169 PLA products, which includes 
protein proximity information in addition to protein abundance  
(Fig. 1g). Regardless of the data type used, Prox-seq displayed good con-
cordance between gene expression and the protein abundance once 
the cells were clustered (Fig. 1i). However, we found that the correlation 
between mRNA and protein for individual cells varied greatly between 
genes, and was typically modest, similarly to other studies (Fig. 1i and 
Supplementary Fig. 2)5,6. We also found that PD1–CD3 and CD3–CD3 
complex PLA products were two of the most significantly enriched PLA 
products in the Jurkat cluster (Wilcoxon rank-sum test, Benjamini–
Hochberg-adjusted P value = 2.2 × 10−55 and 5.1 × 10−53, respectively; 
Fig. 1j). Flow cytometry confirmed CD3 and PD1 as Jurkat-specific 
proteins (Extended Data Fig. 1). For the Raji cluster, ICAM1–HLA-DR 
and HLA-DR–HLA-DR were two of the most significantly enriched PLA 
products (Wilcoxon rank-sum test, Benjamini–Hochberg-adjusted 
P value = 2.7 × 10−54 and 2.4 × 10−46, respectively; Fig. 1j). Flow cytom-
etry confirmed that both ICAM1 and HLA-DR were indeed uniquely 
expressed on Raji cells (Extended Data Fig. 2).

We next sought to show that Prox-seq quantifies protein expres-
sion in single cells. We treated Jurkat and Raji cells with a panel of 13 
Prox-seq probes and analyzed the PLA products using a plate-based 
sequencing method (Supplementary Methods). The plate-based 
method was chosen because such methods typically yield more UMIs 
per cell17. This panel allowed us to measure up to 91 potential pairwise 
protein complexes (Fig. 1b). We observed minimal nonspecific anti-
body binding (Supplementary Fig. 3). Comparing flow cytometry to 
Prox-seq showed high correlation (Spearman’s correlation coefficient, 
0.88) between mean fluorescence intensity and UMIs (Extended Data 
Fig. 3). Prox-seq probes that fail to find a partner do not contribute to 
quantification. To ensure that this property does not interfere with 
protein quantification, we performed a modified Prox-seq protocol 
that enables measurement of both ligated and unligated Prox-seq 
probes (Extended Data Fig. 4). We found that more than 90% of Prox-seq 
probes were ligated with other probes, which offers a straightforward 
explanation of why Prox-seq quantification agrees with flow cytom-
etry (Extended Data Figs. 3 and 4b). These results demonstrated that 
Prox-seq accurately characterizes protein species in single cells, and 

end-to-end experimental and computational pipeline for proteomic 
analysis (Fig. 1a). Prox-seq simultaneously measures extracellular 
proteins, their protein complexes and mRNAs by combining single-cell 
RNA sequencing (scRNA-seq) with a proximity ligation assay (PLA)4. 
Prox-seq uses pairs of DNA-conjugated antibodies, called Prox-seq 
probes, that are designed such that, upon being in proximity, the DNA 
oligonucleotides (oligomers) on the antibodies are ligated4. This yields 
a ligated PLA product that is read out with next-generation sequenc-
ing. From the count of PLA products, we can infer the protein abun-
dance, which is similar to assays such as CITE-seq (cellular indexing 
of transcriptomes and epitopes by sequencing) and REAP-seq (RNA 
expression and protein sequencing assay)5,6, and protein complex 
information (Fig. 1b). Prox-seq has potential for highly multiplexed 
proteomic analysis, because the number of possible protein complexes 
scales quadratically with the number of targeted proteins (Fig. 1b). 
In addition, Prox-seq can readily quantify gene expression, enabling 
multimodal analysis of single cells.

For each protein target, we generated a pair of Prox-seq 
probes (probe A and B), each of which is an antibody conju-
gated to a single-stranded DNA oligomer (Fig. 1a). The ratio of 
oligomer-to-antibody was selected to ensure that probes retain their 
ability to bind their targets (Supplementary Fig. 1). The oligomers 
were designed such that each member of probe A can ligate with any 
member of probe B through a universal connector region (Fig. 1c). 
The complete PLA product spans 119 bases, with 20 of those bases 
hybridized to a connector. Based on estimates of ssDNA and dsDNA 
length, we expect that Prox-seq has a range of 53.8–73.7 nm7. At this 
length scale, PLA products can span the entire length of typical protein 
complexes8. After probe binding and ligation, the cells were processed 
through scRNA-seq methods that utilize poly-A capture, including 
droplet-based sequencing (Drop-seq), Smart-seq2 and 10x Genomics 
Chromium9,10, to retrieve both PLA products and mRNAs. Because liga-
tion requires both a probe A and a probe B, only ligated products can 
be measured by Prox-seq. Unligated Prox-seq probes are automatically 
discarded during the library preparation step. The oligomers used to 
form PLA products include several key features (Fig. 1d). The complete 
PLA product includes a unique molecular identifier (UMI) region for 
PCR bias correction, two barcode regions to identify the protein tar-
gets of the A and B antibodies, a 3′ poly-A tail for capture, and a primer 
binding site for PCR. The universal connector regions enable proximity 
ligation, and only ligated products can be PCR amplified.

PLA-type assays have previously been used for sensitive detection 
of proteins11–13. While these methods have been separately applied to 
make single-cell measurements11,12,14,15 and to use a sequencing readout 
to measure proteins13, these two properties have not been combined 
into a single assay. Furthermore, while PLA has been used to detect 
protein complexes in situ, it has not been paired with a sequencing 
output to measure a high number of protein complexes at the same 
time4. Currently, single-cell protein complex measurements are limited 
to less than ten complexes per cell16. Prox-seq expands this number to 
hundreds of protein complexes. Further, Prox-seq can measure both 
proteins and whole-transcriptome mRNA thus recapitulating the func-
tionality of REAP-seq and CITE-seq5,6.

Fig. 1 | Overview of Prox-seq for joint proteomic and transcriptomic analysis 
of single cells. a, Prox-seq workflow: cells are stained with a panel of Prox-seq 
probe pairs (Prox-seq probe A and B), ligated and processed using a droplet-
based or plate-based scRNA-seq protocol. b, The measurement output of Prox-
seq is the transcript count for each single cell, and the count of n2 PLA products 
for each single cell, where n is the number of targeted proteins. c, Naming 
convention of PLA products. If its probe A targets protein CD3, and its probe 
B targets protein CD4, then the PLA product is called CD3–CD4. d, The design 
of the DNA barcode oligomer. e, t-distributed stochastic neighbor embedding 
(t-SNE) plot showing single cells (T cells/Jurkat and B cells/Raji) clustered with 
mRNA data. f, Principal-component analysis (PCA) plot showing single cells 

clustered with protein abundance data (which is calculated from PLA product 
data). g, t-SNE plot showing single cells clustered with PLA product data.  
h, Concordance between cell-type clusters is displayed using the same PCA plot 
as in f, but with cluster labels obtained from mRNA data as in e. i, Cluster-level 
concordance between protein and mRNA levels is shown for the CD3E gene,  
CD3 protein, HLA-DRA gene and HLA-DR protein. The single cells are colored by 
the relative expression of mRNAs and proteins. j, Plots showing the expression 
levels of two of the most significant PLA product markers for each cell type  
(P values < 10−40, two-sided Wilcoxon rank-sum test with Benjamini–Hochberg 
correction). The single cells are colored by the relative level of PLA products.
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recapitulates the protein quantification feature of other assays such 
as REAP-seq and CITE-seq5,6.

A unique feature of Prox-seq, and a major advantage over existing 
single-cell proteomic techniques, is that it reveals pairwise protein inter-
actions for each of the targeted proteins (Fig. 1). Interactions between 

proteins may be due to the formation of a stable complex or due to 
random (transient) proximity of proteins. PLA product counts alone 
do not distinguish these possibilities (Supplementary Methods)18. 
Therefore, we sought to identify the PLA products that represent pro-
tein complexes. In the absence of complexes, the probability of a PLA 

Probe A

Probe A Probe B

Probe B

PCR handle UMI 1st half
connector region

2nd half
connector region

Probe A
barcode

Probe B
barcode

Poly-A tail

Droplet-based
or

plate-based

Single-cell isolationProbe panel Ligation

Ligation
connector

5' 3'

Target 1

Target 2

Target 3

Target n

Probe incubation

Protein 1

Protein 2

Ligation connector

Single-cell quantification

Proteins

Protein complexes

mRNAs

AAAAA

AAAAA

Measured data Inferred data

mRNAs PLA
products

Protein
complexesProteins

n2 per cell n per cell n2 + n per cell
2

Anti-CD3
probe A

Anti-CD4
probe B

PLA product
CD3–CD4

0

1

2

3

CD3E

0

1

2

3

CD3 protein

0
1
2
3
4

HLA−DRA

0

1

2

3

HLADR protein

j

PLA product t-SNE 1

PL
A 

pr
od

uc
t t

-S
N

E 
2 Relative level

0
1
2
3
4

PD1–CD3

0
1
2
3
4

CD3–CD3

0
1
2
3
4

ICAM1–HLADR

0
1
2
3
4

HLADR–HLADR

i

mRNA t-SNE 1

m
RN

A 
t-S

N
E 

2

a

b c

d

Relative expression

Jurkat Raji

f Protein clustering

–6

–4

–2

0

2

–5.0 –2.5

Protein PCA 1

Pr
ot

ei
n 

PC
A 

2

Jurkat Raji

h Protein clustering

–6

–4

–2

0

2

–5.0 –2.5

Protein PCA 1

Pr
ot

ei
n 

PC
A 

2
Jurkat

Raji

g PLA product clustering

–10

0

10

–20 –10

PLA product t-SNE 1

PL
A 

pr
od

uc
t t

-S
N

E 
2Jurkat

Raji

e mRNA clustering

–20

–10

0

10

–20 –10 0 2.5 5.0 0 2.5 5.00 10 200 10 20

mRNA t-SNE 1

m
RN

A 
t-S

N
E 

2

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-022-01684-z

product forming by random proximity is determined by the concentra-
tion of its corresponding probe A and B on the surface of the cell. Using 
this assumption, we calculated an expected random count for each PLA 
product based on the Prox-seq probe abundance. This expected random 
value reflects the maximum amount of a PLA product from random liga-
tion, that is, if none of the targeted proteins were in a complex with one 
another (Supplementary Methods). When we compared these values to 
our experimental data, we found several PLA products that were present 

at a higher abundance than the expected random value, indicating the 
presence of stable protein complexes (Fig. 2 and Supplementary Figs. 4 
and 5). For example, CD28–CD28 and CD3–CD3 homodimers were high 
abundance complexes in Jurkat cells (Fig. 2b), whereas the PDL1–PDL1 
homodimer was present at very high abundances on Raji cells (Fig. 2c), 
as expected. The difference (Δ) between the measured and expected 
random counts indicates the PLA product counts attributed to the 
stable protein complexes on each cell (Fig. 2).
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Fig. 2 | Quantification of protein complexes and the proximity ligation 
background. a, Prox-seq measures raw read counts for each PLA product, and 
the maximum extent of background signal (expected random PLA count) is 
calculated for each complex from this data (Supplementary Methods). The 
estimation of random counts is further improved by using an iterative algorithm. 
b, Scatterplots showing PLA counts for two complexes from single Jurkat cells 
before application of the algorithm. In the scatterplots, each dot represents 
a single cell, the x axis indicates the expected amount of PLA products from 
random ligation, and the y axis indicates measured PLA product counts.  
c, Scatterplots showing PLA counts from single Raji cells before application of 

the algorithm. d, Complex detection algorithm reveals additional complexes 
with lower abundance. Scatterplots showing the changes in the expected random 
count of CD3–CD28 in Jurkat cells, after the first three iterations of the algorithm. 
The algorithm converges between iteration two and three, and the values remain 
unchanged. e, Scatterplots showing the changes in the expected random count 
of HLA-DR–PDL1 in Raji cells, after the first three iterations of the algorithm. 
f,g, Heat maps showing the final protein complex abundance as a fraction of 
observed PLA count (fraction of X–Y complex = X–Y complex UMI count/X–Y 
PLA product UMI count), averaged across all Jurkat (f) and Raji (g) cells. Complex 
abundances were calculated after algorithm convergence on each cell.
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To further improve the estimation of random proximity back-
ground, we developed a computational approach (Fig. 2a–e and 
Supplementary Methods). Raw Prox-seq data provides matrices for 
measured PLA product counts, from which we calculated the maximum 
extent of background for each protein complex. Then, we executed 
an iterative algorithm to further refine this background estimation. 
First, the algorithm calculates the expected random count of each 
PLA product as a first guess of the background. The algorithm then 
solves a system of quadratic equations describing all possible protein 
complexes, and produces a new estimate. To account for single-cell 
variation, we performed a one-sided t-test with Benjamini–Hoch-
berg correction (once per iteration for all complexes). If a protein 
complex estimate is not statistically significant, then the algorithm 
predicts that the PLA product does not correspond to a stable com-
plex, and the protein complex estimate from the previous iteration 
is left unchanged (Supplementary Methods). If a complex estimate is 
statistically significant (adjusted P value < 0.05), then the algorithm 
predicts that the PLA product corresponds to a stable protein complex, 
and the complex count is updated with the current iteration’s estimate  
(Fig. 2a). Next, the updated protein complex count is used to adjust the 
PLA product counts, and the algorithm starts the next iteration. The 
algorithm converges when the absolute change in protein complex 
count between two successive iterations is below the convergence 
threshold (Supplementary Methods). As we iterate, we updated our 
estimate of the background component, hence the expected random 
counts change with each iteration (Fig. 2d,e).

The difference between the measured counts and the final refined 
background reveals several other complexes that are at low abun-
dance, yet still significantly above the random ligation background 
(Fig. 2f,g). We applied our algorithm to Jurkat cells and Raji cells and 
found that four proteins were calculated to have more than 50% of 
their PLA product counts attributed to protein complexes: CD3 and 
CD28 homodimers in Jurkat cells, and PDL1 and HLA-DR homodimers 
in Raji cells (Fig. 2f,g). Similar results were obtained with a Fisher’s 
Exact Test, also identifying the main protein complexes we found 
(Supplementary Fig. 6).

Identification of the CD3 and CD28 homodimers in the T cells is 
noteworthy because they serve as positive controls in our panel. The 
CD3 Prox-seq probes target the CD3ε protein, two of which are part of 
the TCR complex19. CD28 is known to form a stable homodimer on the 
cell surface through a disulfide bridge20. While it is unclear from previ-
ous studies if PDL1 forms a homodimer on the cell surface, all crystal 
structures of PDL1 feature a homodimer21. HLA-DR is thought to exist 
in an equilibrium between monomers and homodimers on the B cell 
surface22,23. Therefore, our Protein Complex Estimation Algorithm 
correctly identified the presence of four known protein complexes. 
However, B7 and ICAM1 are both thought to undergo some degree of 
homodimerization24,25. ICAM1 does indeed have the highest number 
of PLA products attributed to homodimers but, due to its very high 
expression level, the homodimer represents a small percentage of 
ICAM1 UMIs (approximately 27%; Fig. 2g). The absence of B7 homodi-
mers raises the possibility that the monoclonal antibody in this panel 
is unable to bind to the dimerized form. In summary, the proposed 
algorithm allowed us to determine additional, low-abundance PLA 
products that correspond to protein complexes and provided a statisti-
cal framework to identify and quantify these complexes in our data.

Highly multiplexed quantification of protein complexes in 
peripheral blood mononuclear cells
We next explored the potential of Prox-seq to measure a large number 
of protein complexes, and tested its scalability. We determined the 
effect of panel size on nonspecific antibody binding by comparing 
Jurkat and Raji cell probes with overlapping Prox-seq panels of dif-
ferent sizes (Extended Data Fig. 5). There was negligible increase in 
nonspecific binding with increasing panel size (Extended Data Fig. 5d).  

This is consistent with the low nonspecific binding levels previously 
reported in REAP-seq and CITE-seq5,6, which also use barcoded antibody 
probes for protein detection. We then generated a panel of Prox-seq 
probe pairs targeting 38 immune cell markers, with a primary focus 
on T cell markers (Supplementary Table 3). This panel measures up to 
741 unique protein complexes. We applied this panel to single human 
peripheral blood mononuclear cells (PBMCs) and analyzed the sample 
using two different methods: the plate-based method to maximize 
our ability to measure potentially rare protein complexes, and the 
droplet-based 10x method to simultaneously measure mRNA and PLA 
products in a high-throughput manner.

The plate-based data showed protein measurements that clearly 
identified the expected cell types: CD8+ T cells, CD4+ T cells and 
non-T cells (which do not express CD3; Fig. 3a). Our complex detec-
tion algorithm identified 20 protein complexes present in these cells 
at different levels (Fig. 3b). As before, we identified several known 
homodimers including the CD3 homodimer, the CD28 homodimer 
and the CD9 homodimer19,20,26 (Fig. 3b). In addition, we identified the 
existence of both the CD3–CD8 and CD3–CD4 protein complexes 
(Fig. 3b). Formation of both complexes is consistent with stimulation 
of T cells with the anti-CD3 antibody in our cocktail27,28. Single-cell 
heat maps of an example CD4+ T cell (Fig. 3c) and CD8+ T cell (Fig. 3d) 
showed clear differences, both in terms of detected PLA products and 
detected protein complexes.

CD8 associates with CD9 on naïve CD8+ T cells
Beyond these known protein complexes, we also identified a potentially 
new interaction between CD9 and CD8. For CD8+ T cells, we observed 
that cells could be split into two clear subpopulations. In one subpop-
ulation, CD9 PLA products were primarily identified as paired with 
themselves (CD9–CD9). The other subpopulation displayed CD9 PLA 
products primarily paired with proteins other than themselves (Fig. 3e). 
We then sought to identify which protein was interacting with CD9 when 
the CD9–CD9 PLA product was disfavored. Interestingly, analysis of the 
CD9–CD9 PLA product-low subpopulation identified the existence of 
the CD9–CD8 protein complex (Fig. 3f). This is not a previously known 
complex. However, CD9 is known to participate in immune synapse 
formation, colocalize with CD3 and coprecipitate with CD3 protein29,30. 
The appearance of this protein complex is not clearly attributable to 
changes in protein expression levels, as CD3, CD8 and CD9 were all 
similarly expressed in both cell populations (Fig. 3g). While CD4+ T cells 
also displayed these two subpopulations to a lesser degree, no CD4–CD9 
protein complexes were identified in these cells (Extended Data Fig. 6).

To explore the interplay between protein complexes and mRNA, 
and to identify the two CD8+ T cell subpopulations, we performed a 
matching experiment using a 10x workflow. This experiment yielded 
simultaneous measurements of mRNA, protein complexes and protein 
levels for over 8,700 single cells. We were able to cluster cell types based 
on their mRNA levels. PLA product information correlated well with the 
cell types identified by the mRNA information (Fig. 4a,b).

Next, we investigated the correlation between mRNA and pro-
tein levels for each of our targets. We once again found that mRNA 
and protein are correlated on the level of clusters, but only modestly 
correlated on the single-cell level (Fig. 4c and Supplementary Fig. 7). 
PLA products reflected levels of protein and complexes for various 
clusters (Fig. 4d). This cocktail enables measurement of up to 741 pro-
tein complexes. Of those 741 potential complexes, we identified 37 as 
being present, which largely overlaps with the 20 complexes identified 
by plate-based methods (Extended Data Fig. 7, Supplementary Table 4 
and Supplementary Data 1). Of those 37 protein complexes, 21 of them 
are supported in the literature or the IntAct protein complex database31 
(Supplementary Table 4). Prox-seq failed to identify 8 protein com-
plexes found in the IntAct database (Supplementary Table 4). Each of 
these complexes included a protein with a median expression of fewer 
than five UMIs per cell.
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Fig. 3 | Prox-seq reveals a new CD9–CD8 interaction in peripheral  
blood mononuclear cells. a, t-SNE plots, using protein data, showing that 
Prox-seq can identify CD8+ and CD4+ T cells from CD3, CD4 and CD8 protein 
expression. The single cells are colored by relative expression of CD3, CD4 and 
CD8 proteins. b, Heat maps showing the average count of PLA products and 
complexes predicted from the complex detection algorithm across all single 
cells. The counts were log-transformed before the average is calculated.  
c,d, Heat maps showing the count of all PLA products and detected complexes 
of an example single CD4+ T cell (c) and CD8+ T cell (d). e, The presence of two 

CD9 dimerization states can be seen from scatterplot of CD9 homodimer counts 
compared to CD9 heterodimer counts in CD8+ T cells. Cells were divided into 
two groups based on the red line, which indicates y = x. f, Violin plot showing 
the distribution of the protein complex CD9–CD8 in the two subpopulations 
of CD8+ T cells (one-sided Wilcoxon rank-sum test). If the algorithm does not 
detect a protein complex in a cell, a value of 0 is assigned to that read count.  
g, Violin plots showing the distribution of proteins CD3, CD8 and CD9 in the  
two subpopulations of CD8+ T cells.
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Measurements using the 10x genomics pipeline reproduced the 
findings from the plate-based method that CD8+ T cells are separated 
into two subpopulations based on CD9–CD9 PLA product levels  
(Fig. 4e). In the subpopulation with low CD9–CD9 PLA product, 
CD9 was found to be in a protein complex with CD8 (Fig. 4f ). With 

the benefit of mRNA information, we found that these two cell 
types displayed very different transcriptional profiles (Fig. 4g). 
Cells without the CD9–CD8 protein complex showed upregulation 
of GZMB and NKG7 genes (Fig. 4h). Each of these genes is a marker 
of activated lymphocytes32 (Supplementary Data 2). Conversely, 
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Fig. 4 | Simultaneous protein and mRNA measurements by Prox-seq on 8,700 
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cells with the CD9–CD8 protein complex displayed upregulation 
of SELL and CCR7 genes, both of which are markers for naïve T cells 
(Fig. 4h)32. Furthermore, we also observed the differential expres-
sion of CCR7 protein (Fig. 4i). Taken together, these data suggest 
that the presence of the CD9–CD8 protein complex is a marker of 
naïve CD8+ T cells. We note that it is unlikely that the activation sta-
tus displayed by some cells is a response to our Prox-seq cocktail. 
While the cocktail does include stimulatory antibodies, the entire 
time course of antibody exposure is 30 min, far less than is typically 
required to activate T cells33.

Prox-seq shows macrophage signaling additivity via receptor 
dynamics
We developed a panel of Prox-seq probe pairs targeting 15 surface pro-
teins known to be involved in the nuclear factor kappa B (NF-κB) signal-
ing pathway, a central mediator of innate immunity3 (Supplementary 
Table 5). This panel measures up to 225 protein dimers on each cell. 
First, primary human macrophages were exposed to ligands that acti-
vate NF-κB in the form of lipopolysaccharide (LPS), Pam2CSK4 (PAM) 
or both. LPS activates TLR4, PAM activates TLR2, and both receptors 
signal to the NF-κB pathway. Untreated cells are included as the control. 
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Fig. 5 | Prox-seq enables the study of receptor interactions under 
combined Toll-like receptor stimulation in macrophages. a, Primary human 
macrophages were treated with LPS, PAM or both LPS and PAM for 5 min, 2 h or 
12 h, fixed, and then processed with Prox-seq. Cells were then processed with 
plate-based Prox-seq. b, The general time course of stimulation response can be 
seen from a heat map showing the average expression of all protein and protein 
complex products across the ten conditions. For visualization purposes, the 
rows are clustered with hierarchical clustering (Euclidean distance metric and 
complete linkage), and the dendrogram is hidden. c, Heat map showing the 
average expression of all proteins across the ten conditions. d, Some binding 
partners for TLR2 differed from the average protein expression values, as 
displayed in a heat map showing the average of all binding partners with TLR2. 

In b–d, the UMI counts are log-transformed, then averaged by condition and 
standardized to calculate the row-wise z-score. e,f, The average fold change of 
all PLA products (e), and all proteins for each type of ligand (f). A pseudocount 
of one UMI was added to the numerator and denominator for fold-change 
calculations. The gray lines indicate the fold change of individual PLA products 
or proteins, the red lines indicate the average of all PLA products or proteins, 
and the red bands indicate the standard deviation. In e, n = 155, 166 and 159 PLA 
products are shown for the LPS, PAM and both treatment groups, respectively. 
The blue lines indicate the fold change of TLR2–TLR2 for each stimulation 
condition. In f, n = 15 individual proteins are shown for all three treatment groups. 
A select protein is shown with a blue line.
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For each ligand, cells were stimulated for 5 min, 2 h or 12 h (Fig. 5a). 
Then, the cells were harvested, fixed and processed with plate-based 
Prox-seq. Fixation was used to preserve the receptor interaction for the 
5-min stimulation group and to prevent the antibodies from inducing 
stimulation and introducing artifacts.

Overall, there was a clear trend of increasing PLA products fol-
lowing stimulation through 2 h, and a sharp decline at 12 h (Fig. 5b). 
However, this trend was not universal, with some PLA products rising 
through the entire time course or appearing only at 12 h (Fig. 5b). In 
contrast, total protein levels were consistently lower at 12 h (Fig. 5c).  
We found that the tendency for a protein to produce a pair is not 
strictly a result of protein expression levels. For example, TLR2 dis-
played major changes in its preferred PLA product partners, depend-
ing on both time and stimulant, that do not always track with the 
protein levels for these partners (Fig. 5d). Consistent with previous 
single live-cell imaging studies of NF-κB dynamics, LPS stimula-
tion displayed a faster response with most PLA products peaking 
at 5 min, whereas PAM displayed a slower response that peaked  
at 2 h34 (Fig. 5e).

Prox-seq is well suited for studying how signals are integrated 
when cells encounter two different signals. When LPS and PAM were 
used simultaneously for combinatorial stimulation of macrophages, 
the change in PLA products on average showed traits of both stimuli in 
an additive manner across stimulation durations, with a broad peak that 
was sustained until finally dropping at 12 h (Fig. 5e). Proteins showed a 
similar trend as PLA products (Fig. 5f). This simple additivity suggests 
that for the proteins that we measured, LPS and PAM are operating 
independently, without synergy. This result is consistent with previ-
ous studies that used live-cell microscopy to identify non-integrative 
signaling between LPS and PAM34.

Prox-seq identifies signaling inputs received by macrophages
Live-cell microscopy measurements of NF-κB transcription factors 
can predict if a cell was stimulated with LPS or PAM34. We reasoned 
that the changes in receptor organization could also identify the 
stimulating ligand in a mixed stimulation scenario. We trained a 
logistic regression classifier using PLA count data at each time point 
after only LPS or PAM stimulation. For the 2-h time point, our classi-
fier was able to identify PAM-like or LPS-like macrophage responses 
(Fig. 6a). The single largest coefficient for this classification was the 
presence of the TLR2–TLR2 PLA product, which was highly elevated 
in the LPS-treated cells (Fig. 6b and Extended Data Fig. 8d). Fivefold 
cross-validation verified that the 2-h time point was the best option to 
build the classifier (Extended Data Fig. 8a–d). This classifier was then 
applied to single cells co-stimulated with both LPS and PAM to clas-
sify them into LPS-like, PAM-like or mixed response cells (Extended 
Data Fig. 8e–g). Most single cells were classified as either LPS or PAM 
like, but some exhibited characteristics of both signal types (mixed 
response cells). Technical artifacts were not able to explain the 
existence of mixed response cells (Supplementary Fig. 8). Remark-
ably, similar mixed response cells were also observed in live-cell 
microscopy studies34. A classifier of similar predictive power could 
be produced from protein data; however, the total PLA products 
provided more subtle information than the individual proteins alone 
(Extended Data Fig. 8h–j). For example, all proteins were found to 
have lower expression in LPS-treated cells compared to PAM-treated 
ones, while PLA products IL-8Rb–MD2 and IL-1R–TGFBR1 were higher 
in the former (Extended Data Fig. 8h). Consistent with the logis-
tic regression classifier’s results, the TLR2–TLR2 protein complex 
appeared 2 h after LPS treatment in macrophages, then disappeared 
at 12 h (Fig. 6c). In contrast, under PAM stimulation this protein com-
plex was absent at early time points (2 h) and appeared only 12 h 
after PAM treatment (Fig. 6c). While the TLR2 homodimer is known 
to exist, it is not previously believed to participate in either LPS or  
PAM signaling35,36.

Prox-seq reveals signaling variability under Toll-like receptor 
stimulation
Finally, we explored the variability in single-cell signaling responses 
displayed in our PLA product data. When we compared the mean and 
variance among all PLA products, we observed a sharp decrease in vari-
ance after all stimulation conditions compared to the control group 
(Fig. 6d and Supplementary Fig. 9). Such a reduced single-cell variability 
after ligand stimulation was previously seen in single live-cell micros-
copy studies of NF-κB signaling3,34. We observed that the low-variance 
PLA products all contained a CD36 Prox-seq barcode (Fig. 6e and Sup-
plementary Fig. 10). Histograms of all PLA products containing CD36 
show two modes in control cells, separated by the number of UMIs  
(Fig. 6f and Supplementary Fig. 10). LPS treatment caused cells to shift 
to the higher UMI mode (Fig. 6f). Because this change is already occur-
ring on the 5-min timescale, the increase in PLA products is unlikely to 
be a result of increased protein expression. Rather, CD36 is involved in 
interactions and rearrangement of the other proteins targeted by our 
probe panel. This is further supported by the appearance of new CD36 
protein complexes at 5 min (Fig. 6c). CD36 is a scavenger receptor that 
recognizes a variety of bacterial lipid and lipoprotein molecules37. It 
has also been shown to act as a co-receptor for TLR2 and TLR4, both 
of which are stimulated in response to the ligands in our study38,39. 
Furthermore, stimulation with oxidized low-density lipoprotein can 
induce CD36 to form a protein complex with TLR4 and TLR6 (ref. 40). 
Overall, these results show that Prox-seq can identify rearrangement 
and cell-to-cell variability of receptor components during signaling.

Read depth requirements for Prox-seq
We next explored if Prox-seq has different read depth requirements 
compared to other single-cell sequencing modalities. As is typical 
for single-cell sequencing, we found that plate-based methods offer 
the highest library complexity (Supplementary Table 2)41–43. The 10x 
Genomics pipeline offers the best tradeoff between library complexity 
and cost when mRNA is also recovered. To further explore the relation-
ship between read depth and Prox-seq performance, we performed a 
downsampling analysis, whereby reads were randomly removed from 
cells to simulate lower read depth (Extended Data Fig. 9). We found that 
for the protein and PLA product modalities, the number of UMIs per 
cell and features per cell (where features can be proteins, PLA products 
or protein complexes) increased as the mean number of reads per cell 
approached 10,000 (Extended Data Fig. 9a–d). Our data showed dimin-
ishing returns for read counts above 10,000 reads per cell (Extended 
Data Fig. 9f–g). Therefore, we advise users to apply at least 10,000 
reads per cell when sequencing PLA products.

Discussion
In summary, we present a practical and broadly applicable technology 
for simultaneous measurements of extracellular proteins, protein 
complexes and mRNAs in single cells, and showed its application in 
different biological contexts. We expect that Prox-seq will be a valu-
able tool for understanding signaling, differentiation, development 
and cellular decision-making, which are largely driven by changes in 
protein interactions. The compatibility with commonly used single-cell 
sequencing methods allows its wide adoption by many laboratories. 
Most importantly, Prox-seq can identify members of pairwise protein 
complexes, providing a new modularity to single-cell sequencing. In 
this study, we demonstrated the detection of surface proteins in intact 
single cells, while in principle Prox-seq can be applied to intracellular 
proteins as well as cell lysates.

There are some limitations inherent to Prox-seq. Several of these 
stem from the requirement of antibodies. Monoclonal antibodies were 
primarily used in this study because they enable confident quantifica-
tion of homodimers. However, monoclonal antibodies likely suffer 
from a higher false-negative rate than polyclonal antibodies. Polyclonal 
antibodies, by virtue of having multiple epitopes, should ameliorate 
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some false-negative concerns at the cost of losing the ability to reli-
ably quantify homodimers. Similarly to other antibody-based assays, 
antibodies should be validated for compatibility with Prox-seq. In 
addition, antibody assays are typically stimulatory when the antibody 
is directed at a receptor. When this is undesirable, cells should be 
fixed before Prox-seq analysis. Single-cell sequencing methods have 
recently been proposed for fixed cells; however, there is usually some 
loss of data quality44,45.

In this study, we also developed an algorithm for better prediction 
of the random ligation background between surface proteins, which 
allows the identification of additional, low-abundance complexes. The 
data structure of Prox-seq results in coupling between PLA products, 

influencing the accurate quantification of protein complex abundance. 
Our prediction algorithm addresses this challenge, but still has certain 
limitations. Cells must be clustered before protein complex quantifi-
cation. Some of the algorithm’s parameters are chosen heuristically, 
which can lead to changes in the predicted protein complexes depend-
ing on the parameters. Also, the algorithm currently does not take 
into account the distribution of PLA product counts. We expect that 
utilizing the distribution of PLA product counts could further improve 
statistical power and reduce false-positive rate.

Despite these limitations, Prox-seq accurately identified various 
cell types, measured expected and uncharacterized protein complexes 
in human PBMCs, and studied protein rearrangements and complex 
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Fig. 6 | Prox-seq reveals single-macrophage variability in TLR signaling and 
enables identification of immune inputs from protein measurements.  
a, Receiver operating characteristic (ROC) curves of a logistic regression classifier 
trained on PLA product levels from different time points. The classifier is trained 
to predict whether a single cell was stimulated with LPS or PAM. Each ROC curve 
represents the mean ROC curve from fivefold cross-validation. The area under  
the curve (AUC) metric of each time point is presented as the mean ± s.d. of  
the AUC metrics from fivefold cross-validation for that particular time point.  
b, Bar plot showing the PLA products that most strongly contributed to the  
LPS versus PAM prediction at the 2-h time point. Only PLA products with absolute 
coefficients above 0.2 are shown. A positive value indicates that the PLA product 
is higher in PAM-treated cells, while a negative value indicates that the PLA 
product is higher in LPS-treated cells. Each dot represents the value of the logistic 
regression coefficients from one of the five cross-validation folds. The bars show 

the mean ± s.e.m. of the coefficient’s values across n = 5 cross-validation folds. 
c, Plots showing the dynamics of three example protein complexes. Data are 
presented as the mean ± s.e.m. n = 31 single cells for the control group. For the LPS 
treatment group, n = 32 cells for all three time points. For the PAM group, n = 32 
cells for both 5-min and 2-h time points, and 31 cells for the 12-h time point. For the 
group treated with both LPS and PAM, n = 34 cells for the 5-min time point, and 
36 cells for both 2-h and 12-h time points. d, Scatterplot showing the relationship 
between the mean and variance of log-transformed PLA count of control sample, 
and sample treated with LPS for 5 min. The PLA products with mean values greater 
than or equal to 1 are CD36 related. e, Scatterplot showing relationship between IL-
10R–CD36 and MD2–CD36 complexes in control group and 5-min LPS treatment 
group. f, Plots showing the distribution of PLA product counts of the nine CD36-
related PLA products in control and treatment samples. The solid lines indicate 
the mean, and the ribbons indicate the standard deviation of n = 9 PLA products.
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formation during TLR signaling in macrophages. We detected known 
protein complexes such as the CD3 homodimer and the CD28 homodi-
mer in T cells. We also identified a new receptor interaction between 
CD8 and CD9 on human primary naïve CD8+ T cells. Lastly, we observed 
different temporal changes in receptor arrangements under LPS and 
PAM stimulation in macrophages and showed additive integration of 
TLR signals, which are supported by previous live-cell microscopy and 
modeling studies in single cells34.

Recent advances in single-cell sequencing technology have ena-
bled comprehensive characterization of the transcriptome, genome 
and epigenome at the single-cell level10,46,47. Several methods have 
expanded these approaches to incorporate antibody-based protein 
measurements5,6,48. Furthermore, the field of single-cell mass spectrom-
etry has been undergoing rapid progress49,50. However, the measure-
ment of protein complexes at the single-cell level has a lagging pace 
compared to other analytes. Prox-seq provides a quadratically scaled 
multiplexing capability to greatly increase the number of protein 
complexes that can be measured. Currently, in order to make highly 
multiplexed measurements of protein complexes, one is limited to 
bulk samples that cannot be applied to single cells51,52. Methods suited 
for single cells are limited in their multiplexing capacity, typically 
measuring fewer than 10 complexes4,53; whereas with Prox-seq, we have 
demonstrated the ability to survey 741 possible protein complexes in 
single PBMCs. Furthermore, Prox-seq incorporates scRNA-seq, thereby 
providing multiple single-cell data types simultaneously, which greatly 
enhances multi-omic analysis capability in single cells.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-022-01684-z.
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Methods
Prox-seq probe preparation
Antibodies were DNA conjugated using previously published meth-
ods54. Briefly, antibodies were concentrated and buffer exchanged 
into PBS before conjugation using a concentrator with a 50,000 
molecular-weight cutoff (EMD Millipore). The antibodies were then 
reacted with dibenzocyclooctyne-PEG4-N-hydroxysuccinimidyl ester 
(DBCO; Sigma, 764019) in dimethylsulfoxide (DMSO; Sigma Aldrich). 
This was done by combining the antibody solution with a 2-mM DBCO 
solution at a 10:1 volume-by-volume ratio. This reaction was incubated 
on ice for 1–2 h. After incubation, the DBCO-conjugated antibodies were 
purified using a using a concentrator with a 50,000 molecular-weight 
cutoff and the antibody-to-DBCO ratio was measured via UV-Vis (Nan-
odrop)54. Around 1–2 µg DBCO-conjugated antibodies (at 3–13 µM) 
were combined with an equal volume of 80 µM azide-functionalized 
PLA oligomer (IDT) dissolved in PBS (Life Technologies) and allowed to 
react overnight at 4 °C. For probes that were stored long term, the reac-
tion mixture was then brought to 50% glycerol/PBS (Sigma Aldrich).

Cell culture
Jurkat and Raji cell lines were a generous gift from J. Huang55. Both 
were maintained at 37 °C with 5% CO2 in RPMI (Gibco, Thermo Sci-
entific) supplemented with 10% fetal bovine serum (FBS, Hyclone, 
Fisher Scientific).

Frozen PBMCs and macrophages were purchased from STEMCELL 
Technologies. They were quickly thawed at 37 °C and washed three 
times by suspension in 10 ml RPMI + 10% FBS and centrifugation at 
300g for 3 min. Cells were then allowed to rest overnight at 37 °C with 
5% CO2 in RPMI + 10% FBS.

Flow cytometry
Jurkat and Raji cells were plated in a 96-well plate (Corning) at 100,000 
cells per well. Cells were centrifuged at 500g for 5 min, media was 
removed and replaced with 30 µl 5 nM Prox-seq probes (2.5 nM probe A 
and 2.5 nM probe B) in probe binding buffer (PBS, 0.1% BSA (Thermo Sci-
entific), 0.1 mg ml−1 sonicated salmon sperm DNA (Invitrogen), 6.7 nM 
of each isotype). Cells were incubated with probes for 30 min at 37 °C. 
Cells were then washed three times by centrifuging at 500g for 5 min 
and resuspending in 100 µl 1% BSA/PBS. Cells were then resuspended 
in a 1:100 dilution of secondary antibody (Supplementary Table 6) 
in 1% BSA/PBS and incubated for 20 min at room temperature. Cells 
were centrifuged and washed two times as before. Finally, cells were 
analyzed using a Fortessa 4–15 (BD Biosciences) with a high-throughput 
screening module.

Jurkat/Raji sample preparation (Drop-seq-based Prox-seq)
In total, 150,000 Jurkat and 150,000 Raji cells were counted and spun 
at 500g for 3 min, washed once with 1% BSA/PBS and spun again. Cells 
were then combined and plated in 96-well U-bottom plates. Cells 
were then centrifuged at 300g for 3 min and fixed with 4 mM 3,3′– 
dithiobis(sulfosuccinimidyl propionate, Life Technologies) in PBS 
at 37 °C for 30 min. Cells were washed once with 1 ml 1% BSA/PBS and 
90 µl probes were added at 5 nM each pair (2.5 nM probe A + 2.5 nM 
probe B) in probe binding buffer. Cells were then incubated at 37 °C 
for 60 min, washed twice with 1 ml 1% BSA/PBS, and ligated with 300 µl 
ligation solution. Finally, cells were unfixed with 30 mM dithiothreitol 
at 37 °C for 30 min, centrifuged at 300 g for 3 min, and resuspended 
in 0.1% BSA/PBS.

Jurkat/Raji sample preparation (plate-based Prox-seq)
Cells underwent different processing procedures depending on whether 
they were analyzed by a droplet-based or plate-based protocol. For the 
plate-based analysis, 50,000 Jurkat cells and 50,000 Raji cells were col-
lected, centrifuged at 500g for 3 min, and washed once in 1% BSA/PBS. 
Jurkat cells were resuspended in 5 µM carboxyfluorescein diacetate 

succinimidyl ester (BioLegend) in PBS for 20 min at room temperature 
to identify Jurkat cells specifically during cell sorting. The cells were 
then resuspended in 30 µl Prox-seq probes in probe binding buffer. 
Each probe pair was at 5 nM (2.5 nM probe A + 2.5 nM probe B). Cells were 
incubated at 37 °C for 60 min. They were then centrifuged and washed 
three times by centrifuging and resuspending in 1% BSA/PBS as before. 
Cells were then resuspended in 100 µl ligase solution (50 mM HEPES pH 
7.5, 10 mM MgCl2, 1 mM rATP (New England Biolabs), 9.5 nM connector 
oligomer (TTTCACGACACGACACGATTTAGGTC; IDT), 130 U ml−1 T4 
ligase (NEB)) and rotated for 3 h at 37 °C. With 30 min remaining in the 
incubation, propidium iodide (PI; Invitrogen) was added to the solution 
to a final concentration of 1 µg ml−1. Cells were then centrifuged at 500g 
for 3 min, resuspended in 1% BSA/PBS + 1/500 PI. Single PI-negative cells 
were sorted into each well of two 96-well plates, one for each cell line.

Peripheral blood mononuclear cell sample preparation
One million rested PBMCs were collected and pelleted. All centrifu-
gation steps were performed at 300g for 3 min. The cells were then 
resuspended in 1 ml 1% BSA/PBS and pelleted. The cells were then 
resuspended in Fc blocker solution composed of 95 µl 1% BSA/PBS and 
5 µl TruStain FcX (BioLegend) and incubated at room temperature for 
5 min. Following this step, all buffers were supplemented with 1:1,000 
RNase inhibitor (NEB). The cells were then pelleted and resuspended 
in 300 µl 5 nM Prox-seq probes in probe binding buffer (as above). 
Due to its size, the antibody cocktail was divided into three parts and 
administered in series. For each portion, cells were allowed incubate 
at 37 °C for 15 min, then pelleted and resuspended in the next portion. 
Cells were then spun and washed three times with 1 ml 1% BSA/PBS. 
They were then resuspended in ligation solution, as described above, 
and incubated at 37 °C for 30 min. For the 10x experiment, cells were 
transferred to that workflow at this stage (see below). For plate-based 
experiments, cells were spun and washed in 1% BSA/PBS and resus-
pended in 500 µl 1% BSA/PBS + 1/500 PI (Invitrogen) and incubated 
at room temperature for 10 min. Finally, cells were pelleted, resus-
pended in 500 µl 1% BSA/PBS, and live cells were sorted into plates.

Peripheral blood mononuclear cell sample preparation–10x
After ligation, 1 ml 1% BSA/PBS was added to the cells and they were 
centrifuged at 300g for 5 min. Cells were resuspended in 1 ml 1% BSA/
PBS and centrifuged at 300g for 5 min. Dead cells were removed from 
this sample using Miltenyi Biotec Dead Cell Removal Kit (130-090-101) 
following the manufacturer’s guidelines. Cells were then counted and 
diluted to 1,000 cells per µl. This sample was then processed using the 
recommended 10x protocol and modified library preparation proce-
dure (Supplementary Methods).

Primary macrophage sample preparation
Thawed macrophages were distributed into ten wells of a 
non-tissue-culture-treated 24-well plate. They were then allowed to 
rest overnight in RPMI + 10% FBS. While in the plate, cells were cen-
trifuged for 300g for 3 min and stimulated for 12 h, 2 h or 5 min with 
100 ng ml−1 LPS, 40 ng ml−1 PAM, or both in RPMI + 10% FBS. All future 
centrifugation steps occurred at 300g for 3 min. After stimulation, cells 
were dissociated with TryplE (Gibco), pelleted and resuspended in 4% 
paraformaldehyde (PFA, ChemCruz) for 15 min at room temperature. 
Cells were then spun and washed one time with 1 ml 1% BSA/PBS and 
resuspended in 95 µl 1% BSA/PBS + 5 µl TruStain FcX. After 5 min at room 
temperature, cells were pelleted and each sample was resuspended 
in 54 µl 5 nM Prox-seq probes in probe binding buffer (as above). The 
cells were allowed to incubate for 30 min at 37 °C. Following probe 
incubation, the cells were pelleted and washed with 1 ml 1% BSA/PBS 
three times. The cells were then resuspended in ligation solution as 
above and allowed to incubate for 30 min at 37 °C. Finally, the cells were  
pelleted, resuspended in 500 µl 1% BSA/PBS + 1/500 PI (Invitrogen), 
and live cells were sorted into plates.
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Prox-seq
For droplet-based Prox-seq, cells were processed according to the 
Drop-seq protocol. Briefly, cells were co-encapsulated with bar-
coded beads (ChemGenes, Macosko-2011-10(V+)) in droplets using 
a microfluidic device. Next, the droplets were broken, and the beads 
were subjected to reverse transcription, exonuclease digestion and 
whole-transcriptome amplification. The resulting PLA products and 
cDNAs were processed separately into sequencing libraries.

For plate-based Prox-seq, cells were sorted into 96-well plates 
containing 4 µl of Smart-seq2 lysis buffer (0.1% Triton X-100, 1 unit per 
µl RNase inhibitor, murine (NEB), 2.5 mM dNTPs, 2.5 µM SmartSeq2_oli-
godTVN, 2.5 µM SmartSeq2_oligodTGT in water). For PFA-fixed primary 
macrophages, the cells were sorted into 96-well plates containing 6 µl 
of modified Smart-seq2 lysis buffer (0.1% Triton X-100, 1,000 units per 
ml RNase inhibitor, murine (NEB), 20 units per ml proteinase K (NEB), 
2.5 mM dNTPs, 2.5 µM SmartSeq2_oligodTVN, 2.5 µM SmartSeq2_oli-
godTGT in TE buffer). For non-PFA-fixed cells, after cell sorting, the 
plates were frozen at −80 °C for storage. When the samples are ready 
for processing, the plates were thawed on ice and incubated at 72 °C 
for 3 min before library preparation. For PFA-fixed cells, after cell 
sorting, the plates were incubated at 56 °C for 1 h, 95 °C for 10 min, 
4 °C for at least 5 min before storage at −80 °C. Afterwards, the plates 
can be thawed on ice and proceed directly to library preparation. For 
plate-based Prox-seq library preparation, briefly, 2–4 µl per well was 
used for pre-amplification of PLA products, followed by another PCR 
reaction to attach the single-cell indexes and the sequencing adaptor. 
More detailed protocols are available in the Supplementary Methods.

All oligonucleotides and primers used for droplet-based and 
plate-based methods are summarized in Supplementary Tables 7–9.

Next-generation sequencing
For the droplet-based Prox-seq, a NextSeq Mid-output kit v2.5 was used 
to sequence both mRNA and PLA libraries in the same sequencing run. 
The cDNA and PLA libraries each received 20% of the total reads. PhiX 
control was spiked in at 40% concentration according to Illumina’s 
instruction, because of the low diversity of the PLA libraries. Custom 
read 1 sequencing primer (Read1CustomSeqB), custom read 2 primer 
(DropPLA_Read2) and custom i7 index read primer (DropPLA_i7Read) 
were used according to Illumina’s instructions. Read distribution was 
20 bases for read 1, 85 bases for read 2 and 8 bases for i7 index read. For 
the plate-based Prox-seq, PLA libraries from four 96-well plates were 
sequenced with a mid-output NextSeq kit v2.5. PhiX control was spiked 
in at 40% concentration according to Illumina’s instructions. Custom 
read 1 sequencing primer (SmartPLA_Read1), custom i5 index read 
primer (SmartPLA_i5Read) and custom i7 index read primer (Smart-
PLA_i7Read) were used according to Illumina’s instructions. Read 
distribution was 75 bases for read 1, 8 bases for i5 index read and 8 
bases for i7 index read.

Sequencing alignment
Drop-seq mRNA-sequencing data were aligned using Drop-seq tools 
v2.3.0. The 10x mRNA-sequencing data were aligned using Cell Ranger 
v6.1.1 and the human reference genome GRCh38 version 2020-A from 
10x Genomics. The sequencing data of PLA products were aligned 
using a custom Java program available at https://github.com/tay-lab/
Prox-seq/. More details are available in the Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The raw and count data are deposited in NCBI’s Gene Expression Omni-
bus under accession numbers GSE149574 and GSE196130. Source data 
are provided with this paper.

Code availability
The custom program for PLA product alignment and the codes used 
for alignment and data analysis are available at https://github.com/
tay-lab/Prox-seq/.
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Extended Data Fig. 1 | Jurkat cell protein expression levels. Flow cytometry data showing Prox-seq probe binding on Jurkat cells. (a) Each T cell marker in the panel 
along with isotype controls. (b) The gating strategy to identify individual cells. CD45RA uses the mouse IgG2a control, CD147 uses the goat control, and the rest use the 
mouse IgG1 control.
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Extended Data Fig. 2 | Raji cell protein expression levels. Flow cytometry data showing Prox-seq probe binding on Raji cells. (a), Each B cell marker in the panel along 
with isotype controls. (b) The gating strategy to identify individual cells. B7 and ICAM1 use the mouse IgG1 control, HLA-DR uses the mouse IgG2a control, PDL1 uses 
the mouse IgG2b control, and CD147 uses the goat control.
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Extended Data Fig. 3 | Comparison of protein quantification between Prox-
seq and flow cytometry. (a, b) Distribution of the protein abundance of Jurkat 
markers as measured by (a) Prox-seq and (b) flow cytometry. (c, d) Distribution 
of the protein abundance of Raji markers as measured by (c) Prox-seq and (d) flow 

cytometry. (e) Scatter plot showing the median protein abundance as measured 
by flow cytometry or Prox-seq. Each point indicates a protein. The plot also shows 
the Spearman’s correlation coefficient, ρ, between Prox-seq and flow cytometry 
measurements.
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Extended Data Fig. 4 | Benchmarking of protein quantification based on PLA 
products. (a) Schematic showing how the use of free oligo binding could help 
measure non-proximal Prox-seq probes. After the ligation step in the standard 
Prox-seq protocol, free DNA oligos were added so that they can be ligated to 
probes that are bound to protein but are not proximal to another Prox-seq probe. 
Antibodies’ cartoons were made with BioRender’s academic license. (b) Box 
plots showing the fraction of protein counts calculated from PLA products to 
the protein counts calculated from PLA products and non-proximal Prox-seq 
probes (n = 95 Jurkat cells and 93 Raji cells). The center line of the box indicates 
the median, the bottom and top bounds of the box indicate the 25th and 75th 

percentiles, and the whiskers extend to 1.5× the interquartile range beyond the 
box. (c) Scatter plots comparing protein quantification based on PLA products 
vs. free oligo binding method for Jurkat cell markers. (d) Scatter plots comparing 
protein quantification based on PLA products vs. free oligo for Raji cell markers. 
(e) Scatter plots comparing CD147 protein quantification based on PLA products 
vs. free oligo binding method for Jurkat and Raji cells. In (c–e), the numbers 
above each panel indicate the Pearson’s correlation coefficients. The Free oligo-
based estimates are made by taking the number of PLA UMI’s that contain one 
barcode from the indicated protein and one barcode from the free oligo.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Analysis of Prox-seq probe non-specific background 
binding. (a) Schematic of the experiment. Jurkat and Raji cells were separately 
incubated with the full or half Prox-seq probe panel, then combined and 
processed with the 10x Prox-seq pipeline. The half probe panel includes Jurkat 
markers CD28, PD1, and CD147 probes, and Raji markers HLADR and PDL1. The 
full probe panel contains all the probes in the half panel, plus Jurkat marker CD3 
and Raji markers ICAM1 and B7. (b) t-SNE plot based on PLA product data showing 
the cell type and probe panel identity. F and H stands for full and half panels, 
respectively (n = 856, 2738, 1159 and 1051 single cells for Jurkat_F, Jurkat_H, Raji_F 
and Raji_H, respectively). (c) t-SNE plots showing the expression levels of CD3E 
and HLA-DRA genes. (d) Plots showing the median counts of non-specific PLA 
products across different cell types and probe panels. The center line of the box 
indicates the median, the bottom and top bounds of the box indicate the 25th 
and 75th percentiles, and the whiskers extend to 1.5× the interquartile range 

beyond the box. Each black line connects the median counts of a non-specific PLA 
product in the half and full probe panel. n = 16 non-specific PLA products  
for both Jurkat and Raji clusters. (e) Violin plots showing the relative levels  
of Jurkat-specific PLA products CD28:CD28, PD1:PD1 and CD3:CD3, and Raji-
specific PLA products HLADR:HLADR, PDL1:PDL1 and ICAM1:ICAM1. CD3:CD3 
and ICAM1:ICAM1 PLA products were expected to only be detected in full probe 
panel clusters. (f) Heatmap showing the relative level (row z-score) of top 10 
PLA product markers of each of the 4 clusters identified in (c). (g) Heatmaps 
showing the average log-transformed levels of protein complexes in Jurkat 
cells. (h) Violin plot showing the normalized levels of protein complexes 
CD28:CD28 and CD28:PD1 in Jurkat cells. The normalized levels were calculated 
by log-transforming counts per 10,000 UMIs of predicted protein complexes 
plus a pseudocount of 1. The fold-change was calculated by dividing the average 
normalized level of the Jurkat full panel cells by that of the Jurkat half panel cells.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-022-01684-z

Extended Data Fig. 6 | Characterization of CD4 T cells in PBMCs using 
plate-based Prox-seq. (a) Scatter plot showing two subpopulations of CD4 T 
cells, according to CD9-related PLA products level. (b) Violin plot showing that, 
unlike CD8 T cells, both subpopulations of CD4 T cells do not express the protein 

complex CD9:CD8. (c) Violin plots showing the distribution of proteins CD3, 
CD4 and CD9 in the two subpopulations of CD4 T cells. Note that the complex 
detection algorithm assigns zero values to low-abundance PLA products that do 
not pass the statistical test.
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Extended Data Fig. 7 | Number of predicted protein complexes across cell 
types. (a) t-SNE plot of PBMC clusters, obtained using mRNA expression level.  
(b) Violin plots showing the number of predicted protein complexes per single 
cell, for each of the 8 clusters identified using mRNA data. The horizontal red 
lines indicate the total number of predicted protein complexes per cluster. 

In total, 61 protein complexes were detected across all 8 clusters, of which 
37 complexes are unique. (c) Plot showing the number of protein complexes 
predicted by the algorithm at different number of cells. Here, various numbers of 
cells were randomly subsampled from each of the 8 clusters identified in (a), and 
the complex prediction algorithm was applied on the subsampled cells.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Analysis of LPS and PAM-treated macrophages.  
(a–c) Receiver operating characteristic (ROC) curves of 5-fold cross-validation 
of a logistic regression classifier that is trained on (a) 5-minute data, (b) 2-hour 
data, and (c) 12-hour data. The black dashed lines in (a–c) indicate random 
classification. (d) Violin plots showing the log-transformed count of the top 
three PLA products of the logistic regression model that is trained on 2-hour 
data. P-values are calculated using two-sided Welch’s t-test (n = 31, 32, 32, and 36 
single cells for the control, LPS, PAM, and both treatment groups, respectively). 
(e) Schematic showing how the logistic regression classifier is used to predict 
response (LPS-like, PAM-liked, and mixed) in cells treated with both LPS and 
PAM after 2 h. (f) Bar plot showing the proportion of LPS/PAM-treated cells 
that show LPS-like, PAM-like and mixed response. n indicates the number of 
cells in each response group. (g) Violin plots showing the log-transformed 

count of the top logistic regression coefficients (Fig. 6b) in each predicted 
response group for cells treated with both ligands. (h, i) Heatmaps showing (h) 
the relative PLA product levels and (i) the relative protein levels of the LPS-like, 
PAM-like and mixed response groups. The PLA product (or protein) counts are 
log-transformed, then averaged by response group, and finally standardized. 
Hierarchical clustering is performed on the PLA products (or proteins) and 
response groups using Euclidean distance and complete linkage. (j) ROC curves 
of a logistic regression classifier trained on protein levels from different time 
points. The classifier is trained to predict whether a single cell was stimulated 
with LPS or PAM. Each ROC curve represents the mean ROC curve from 5-fold 
cross-validation. The area under the curve (AUC) metric of each time point is 
presented as mean ± s.d. of the AUC metrics from 5-fold cross-validation for that 
particular time point.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-022-01684-z

Extended Data Fig. 9 | Analysis of sequencing depth. (a–c) Effects of 
sequencing depth on (a) the number of detected genes and transcript counts 
per single cell, (b) the number of detected PLA products and their UMI counts, 
and (c) the number of detected proteins and protein UMI counts in 10x-based 
Prox-seq. (d) Effects of sequencing depth on automated cell type annotation 
based on mRNA data with singleR package. The cell type annotation at the 
maximum sequencing depth is used as the ground truth annotation. (e) Effects 
of sequencing depth on the number of detected protein complexes. Clusters 
were identified using mRNA data (see Extended Data Fig. 7). Clusters 0 and 3 
were chosen as examples because they had the most number of cells per cluster. 

In (a–e), the sequencing results of the mRNA and PLA product libraries from the 
10x PBMC experiment were downsampled to 10%, 20%, 40%, 60%, and 80% to 
simulate different sequencing depths. (f, g) Effects of sequencing depth on (f) 
the number of detected PLA products and their UMI counts, and (g) the number 
of detected proteins and protein UMI counts in plate-based Prox-seq. In (f, g), the 
sequencing results of the mRNA and PLA product libraries from the plate-based 
PBMC experiment were downsampled to 0.5%, 1%, 5%, 10%, 25%, 50%, and 75% 
to simulate different sequencing depths. The red dashed lines in (e, f) indicate 
10,000 mean reads per cell.

http://www.nature.com/naturemethods
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