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SUMMARY
Many scenarios in cellular communication require cells to interpret multiple dynamic signals. It is unclear how
exposure to inflammatory stimuli alters transcriptional responses to subsequent stimulus. Using high-
throughput microfluidic live-cell analysis, we systematically profile the NF-kB response to different signal se-
quences in single cells. We find that NF-kB dynamics store the short-term history of received signals: de-
pending on the prior pathogenic or cytokine signal, the NF-kB response to subsequent stimuli varies from
no response to full activation. Using information theory, we reveal that these stimulus-dependent changes
in the NF-kB response encode and reflect information about the identity and dose of the prior stimulus.
Small-molecule inhibition, computational modeling, and gene expression profiling show that this encoding
is driven by stimulus-dependent engagement of negative feedback modules. These results provide a model
for how signal transduction networks process sequences of inflammatory stimuli to coordinate cellular re-
sponses in complex dynamic environments.
INTRODUCTION

Exposure to pathogenic stimuli results in acute secretion of in-

flammatory cytokines, followed by a gradual rise and fall in

anti-inflammatory cytokines and growth factors (Hackett et al.,

2008; Kiers et al., 2017; Luan et al., 2019; Rao et al., 2010).

The sequence (temporal ordering) of these stimuli provides infor-

mation about the local tissue environment to nearby cells, and

disruption of this progression is linked to pathology. For

example, inflammatory signals in sepsis and chronic inflamma-

tion dramatically reshape the innate immune response to subse-

quent challenges (Deng et al., 2013; Foster et al., 2007; Here-

mans et al., 1990; Luan et al., 2019). Furthermore, efforts to

engineer the inflammatory response in adjuvant therapy require

understanding how prior exposure alters subsequent stimulus

responses (Lérias et al., 2020; Pulendran et al., 2021).

Despite the diversity of inflammatory signals, many of these

converge on few signaling networks with shared intracellular ki-

nases and activated transcription factors. Pathogenic ligands

which activate the Toll-like receptor (TLR) family and pro-inflam-

matory cytokines secreted by host sentinel cells all converge on

a small set of key inflammatory transcription factors, including

the canonical NF-kB family transcription factor RelA (Hayden

and Ghosh, 2012; Kawasaki and Kawai, 2014; Wajant and

Scheurich, 2011). Patterns of NF-kB activation over time, or acti-

vation dynamics, transmit information about stimulus identity

and coordinate the subsequent inflammatory response. Ligands

induce distinct dynamics of NF-kB nuclear translocation, which
This is an open access article under the CC BY-N
facilitate accurate information transmission from extracellular

signals to expression of response genes (Adelaja et al., 2021;

Kellogg et al., 2017). NF-kB dynamics reshape the accessible

chromatin landscape of the cell and regulate gene expression

induced by each stimulus (Cheng et al., 2021; Sen et al., 2020).

However, it is unknown how prior signal exposure alters NF-kB

dynamics. If prior stimuli induce distinct feedback responses

which modulate a signaling network, it raises the possibility

that activation dynamics can encode information about both

the cell’s current stimulus and prior history.

Previous studies of innate immune signaling focused on

population-level effects of stimulus history at timescales of

days to weeks (Divangahi et al., 2021; Foster et al., 2007;

Luan et al., 2019; Novakovic et al., 2016). These studies report

that innate immune memory can induce both priming, where

response to subsequent stimulus is stronger (Deng et al.,

2013; Novakovic et al., 2016), and tolerance, where the subse-

quent response becomes attenuated (Butcher et al., 2018;

Foster et al., 2007; Ifrim et al., 2014). However, innate immune

memory at short timescales is poorly studied due to the diffi-

culties in strict control of stimulus timing and continual cell

monitoring. Furthermore, population averaged readouts often

blur single-cell dynamics and may not represent the actual

cellular response.

Here, we explored how prior stimulus history alters subse-

quent signaling responses in the NF-kB signaling network by

combining automated microfluidic stimulation with live-cell im-

aging (Figure 1A). We found that prior stimuli produced distinct
Cell Reports 40, 111159, August 16, 2022 ª 2022 The Authors. 1
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Figure 1. Microfluidic live-cell imaging tracks single-cell NF-kB responses through multiple sequential stimuli

(A) Schematic representation of experimental conditions and microfluidic imaging setup. RelA-DsRed-tagged 3T3s were stimulated with non-repeating

combinations of four ligands with in an automated microfluidic cell culture device.

(B) Schematic representation of TNF-a (TNFR), IL-1b (IL-1R), LPS (TLR4), and PAM (TLR2) signaling converging on activation of RelA.

(C) Representative grayscale images of RelA nuclear translocation during stimulation with mid-dose TNF-a (0 min), IL-1b (120 min), LPS (240 min), and PAM

(360 min). RelA nuclear translocation in single cells (white arrows) is shown. Scale bar, 50 mm.

(D) Quantification of nuclear/cytoplasmic NF-kB over imaging interval. Gray dashed lines indicate when new stimulus was provided. See also Videos S1 and S2.
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attenuation patterns in subsequent NF-kB signaling dynamics

through differential regulation of negative feedbacks. These pat-

terns encode information about the cell’s prior history, showing

that the NF-kB network stores information about the temporal

sequence of environmental signals and transmits that informa-

tion in the inflammatory response.

RESULTS

Prior ligand history influences NF-kB activation to
subsequent stimuli
We focused on the interactions between four inflammatory li-

gands, tumor necrosis factor alpha (TNF-a), interleukin-1b

(IL-1b), lipopolysaccharide (LPS), and PAM2CSK4 (PAM). TNF-

a and IL-1b are key pro-inflammatory cytokines that are secreted

by sentinel cells and which activate TNFR and IL-1R, respec-

tively (Lawrence, 2009). LPS is a cell wall component of Gram-

negative bacteria that activates TLR4, while PAM is a synthetic

analog of bacterial lipopeptides that activates TLR2/6 (Kawasaki

and Kawai, 2014). Thus, LPS and PAM represent pathogen sig-

nals, which would trigger local secretion of TNF-a and IL-1b in an

infection scenario. Signaling for LPS, PAM, and IL-1b share the

receptor-associated adaptor protein MyD88 and downstream

components, including IRAK1 (Figure 1B) (Cohen, 2014). In
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contrast, TNF-a signaling acts through a different set of recep-

tor-associated intermediaries (Hayden and Ghosh, 2012). All

these pathways converge at activation of IkB kinase (IKK), which

mediates nuclear translocation of RelA (Hayden and Ghosh,

2012; Kawasaki and Kawai, 2014). Multiple levels of negative

feedback regulate this network, including auto-inhibitory phos-

phorylation of IRAK1 and several transcriptionally regulated

negative feedback proteins, such as A20 and IkBε (Figure 1B)

(Adamson et al., 2016; DeFelice et al., 2019; Kearns et al.,

2006; Shembade et al., 2010; Son et al., 2021). Each of these

negative feedback proteins targets different components in the

NF-kB signaling network (Figure 1B) (DeFelice et al., 2019).

To characterize how prior histories shape the NF-kB response

to a subsequent ligand, we used a microfluidic platform to pro-

vide sequential stimuli to RelA�/� NIH/3T3 fibroblasts (3T3s) ex-

pressing a RelA-DsRed fusion protein (Figure 1A) (Kellogg et al.,

2014; Son et al., 2021). By continuously imaging 3T3s in this plat-

form, we evaluated NF-kB dynamics under a series of stimuli

without disrupting the cells (Figures 1C and 1D; Videos S1 and

S2). To establish a baseline for comparison between the history

of the same and different ligands, we stimulated cells with the

same ligand four times. In general, prior stimulus with a ligand

weakened subsequent responses to the same ligand, which is

consistent with previous work with repeated ligand stimulus
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(Adamson et al., 2016; Ashall et al., 2009; Son et al., 2021). LPS

and PAM only produced a response after the first stimulus, while

TNF-a and IL-1b exhibited weak responses after the second to

fourth stimulus depending on dose (Figures 2A–2C). We then

systematically profiled the effects of prior history by stimulating

cells with non-repeating sequences of all four ligands. This

approach produced 24 unique stimulus conditions. The first

stimulus (S1) is provided to cells without prior inflammatory

ligand exposure, and thus induces a ‘‘naive’’ response.

However, the second, third, and fourth stimuli (S2–S4) would

induce NF-kB responses affected by one, two, or three prior li-

gands, respectively. We used the response to a particular ligand

at S1 as a baseline for comparing how different prior stimulus se-

quences change the response to that ligand. In addition, to test

how stimulus dose changes prior history effects, we calibrated

high, mid, and low doses for each ligand based on the percent-

age of activated cells (Figures S1A–S1E), then repeated the 24

stimulus sequences for each dose. In our initial dataset of 72

conditions, we analyzed more than 10,000 single cells

(Figures 2A–2C and S1F–S3) with a range of prior histories and

stimulus doses.

To observe general trends in ligand response, we first exam-

ined how the response to a specific ligand changed depending

on its order in a stimulus sequence. All single-cell responses in

each sequence position were grouped by ligand and normalized

to the mean S1 response for that ligand (Figures 2A–2C and

S4A–S4C). When we compared the amplitude changes over

the four sequence positions, we observed that response for

each ligand decreased from S1 to S4 (Figure 2D). Even in low-

dose conditions, where response heterogeneity results in highly

variable response amplitudes, ligand responses decreased from

S1 to S4. Similar trends were observed when quantifying the

area under the curve (AUC) of the response instead of the

maximum response amplitude (Figure S4D). From these obser-

vations, we concluded that prior exposure history primarily at-

tenuates signaling responses to subsequent ligands. However,

we also noted that distinct patterns of attenuation existed de-

pending on ligand identity and dose. Even at high dose, where

attenuation was strongest, cells responded to TNF-a stimulus ir-

respective of prior history (Figures 2A and S4A). At mid and low

dose, each ligand displayed different history responses. LPS and

TNF-a responses exhibited the weakest attenuation, with some

level of stimulus response retained across most conditions,

while IL-1b and PAM responses showed large variability in

response depending on prior stimulus history (Figures 2B, 2C,

S4B, and S4C). Thus, particular histories of ligand exposure

can alter subsequent stimulus responses in a consistent and

predictable manner.
Figure 2. Single-cell NF-kB activation traces reveal ligand and dose-sp

(A–C) NF-kB response dynamics over 2 h of stimulus for each ligand. Fifty random

each condition. Each row shows the nuclear NF-kB level of a single-cell measure

are arranged from the first stimulus (S1) to the fourth stimulus (S4). Stimulus orders

L for LPS, and P for PAM. Heatmap for response to four consecutive feedingswith

normalized based on the high-dose S1 response to each ligand.

(D) Single-cell responses from S1 to S4, normalized to the mean of correspondin

mean. Bonferroni corrected Wilcoxon rank-sum test; ***p < 10�4. Fold change

Figures S1–S4.
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The NF-kB network reflects information about prior
ligands in the subsequent response
If particular ligand histories alter subsequent response dynamics

in a distinctive manner, it would be possible to characterize a

cell’s prior history through its response to subsequent stimuli.

However, the regulation of a genetic network is inherently noisy,

resulting in diverse responses to identical stimulus at the single-

cell level and over time (Elowitz et al., 2002; Newman et al., 2006;

Taniguchi et al., 2010). This variability may impact how accu-

rately individual cells can reflect prior history in subsequent re-

sponses. Thus, we needed to address single-cell variability in

characterizing how effectively prior history is reflected in subse-

quent responses.

We used information theory to characterize the distinguish-

ability of NF-kB responses to different stimulus orders despite

single-cell noise. In information theory, themaximum information

transmittable by a noisy network is described by the channel

capacity (CC) (Figure 3A). In our case, the CC represents the

maximum distinguishability of groups in a population response.

Therefore, the CC can be used to quantify the accuracy of signal

transduction in the NF-kB network (Adelaja et al., 2021; Cheong

et al., 2011; Selimkhanov et al., 2014; Tudelska et al., 2017). We

first measured the CC of the NF-kB network in distinguishing all

24 stimulus conditions in each dose. If the NF-kB network did not

retain information about prior history, we would expect the CC to

stay the same or decrease fromS1 to S4, since the effect of noise

is enhanced with signal attenuation (Figure 2D) (Simpson et al.,

2009). However, we found that CC increased from S1 to S2

despite attenuation (Figure 3B). Even later in the stimulus

sequence at S3 and S4, where attenuation became more pro-

nounced, the CC still remained above the baseline at S1. These

observations indicate that, even though the same four ligands

are used for stimulation in each sequence, more distinguishable

responses are present in S2–S4. Thus, the NF-kB signaling

network retains information about prior history and coordinates

subsequent stimulus responses based on prior exposure.

To investigate how prior history affected the response for each

ligand, we quantified the CC for each ligand at positions S1–S4.

We grouped the samples based on ligand and sequence position

and calculated the CC among the samples within each group

(Figure 3C). Ligands unaffected by prior history would produce

identical responses and a CC of zero, while ligands for which

prior history changes activation dynamics would see an increase

in CC at S2–S4. We found that the CC specific to each ligand

generally rose at S2 and remained elevated at S3–S4. In other

words, more distinct response behaviors are present in S2–S4,

indicating that a cell’s response to a specific ligand is signifi-

cantly changed based on the cell’s prior history. However,
ecific attenuation of signaling by prior stimuli

ly selected single-cell traces from two independent replicates are displayed for

d by time-lapse microscopy, and the x axis shows the time. Heatmap columns

are shown to the left of the first heatmap, where T stands for TNF-a, I for IL-1b,

the same ligand are shown above the combinatorial orders. Heatmap colors are

g S1 response (>2,000 cells for each condition). Open circle and line show the

difference between sample means >1 (#), >1.25 (##), or >4 (###). See also
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Figure 3. Information about prior stimulus history is reflected in the dynamics of subsequent NF-kB responses

(A) Schematic representation of information theory analysis. Nuclear NF-kB levels at six different time points (20, 30, 40, 50, 70, and 90 min) from multiple

conditions are used as inputs to calculate the mutual information between conditions. Channel capacity (CC) represents the maximum mutual information

between conditions.

(B) Distinguishability among all samples at S1–S4. CC is calculated from the six-dimension vector (blue line) and compared with the CC from a single feature

(red line).

(C) CC among samples exposed to the indicated ligand at S1–S4 calculated using the six-dimension vector. CC in S2–S4 indicates how accurately the NF-kB

network reflects the prior history in the response to the indicated ligand.

(D) As in (C), CC among all samples with the same ligand at each sequence interval but calculated using a single feature.

(E) Mutual information (MI) between ligand response dynamics (S1 and S2 only). T, I, L, and P indicate the order of the stimulus. MI of 1 indicates complete

distinguishability between two conditions.
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TNF-a at high dose and LPS at low dose gained little information

fromprior history, which reflected our observations that prior his-

tory only weakly attenuated signaling in those samples

(Figures 2A, 2C, S4A, and S4C). Nonetheless, the general trend

of increased CC at S2–S4 compared with S1 suggests that the

NF-kB network encodes information about prior history in sub-

sequent responses.

We also noted that the dynamics of the NF-kB response play a

major role in accurate information transmission from prior his-

tory. When we compared the CC using response amplitudes at

multiple time points with the CC using a single feature (the
response amplitude when the mean was at its peak), we found

that the CC from a single feature (Figures 3B, red lines and 3D)

are substantially lower than the CC from the dynamic measure-

ment (Figure 3B, blue lines and 3C). This indicates that alteration

of NF-kB activation dynamics plays a role in transmitting infor-

mation about prior history (Selimkhanov et al., 2014).

We then investigated which ligand responses were most

distinguishable from each other by calculating the mutual infor-

mation between a pair of ligand responses. We focused on the

naive responses to a ligand at S1 and following another ligand

at S2, resulting in a comparison of 16 conditions for each dose
Cell Reports 40, 111159, August 16, 2022 5
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(Figure 3E). In the comparison matrix, mutual information pat-

terns at low and mid dose were primarily driven by differences

between TNF-a or IL-1b response dynamics and LPS or PAM

response dynamics (e.g., comparing TNF-a and LPS). However,

response to IL-1b or PAM following LPS (LI or LP) also were

distinguishable from almost every other response at mid dose.

At high dose, the pattern of mutual information changed such

that all TNF-a responses became highly distinguishable from

other samples. Likewise, the naive and TNF-a-exposed re-

sponses to IL-1b, LPS, and PAM also became distinguishable

from the same responses following either IL-1b, LPS, or PAM

(e.g., TI versus LI or TL versus IL). This shift in mutual information

patterns between low, mid, and high doses suggests that funda-

mentally distinct mechanisms could potentially mediate the ef-

fects of prior history in these dose ranges. Overall, these mutual

information analyses confirmed that the NF-kB response is

distinguished based on ligand sequence at the single-cell level.

Prior stimuli attenuate the subsequent NF-kB response
in a ligand- and dose-dependent manner
To study how information about prior history is stored in the NF-

kB network, we investigated how different stimuli produced

different patterns of attenuation (Figure 1C). At all three dose

ranges, TNF-a signaling was only weakly attenuated by prior

stimulus, while the attenuation of LPS, PAM, and IL-1b signaling

varied depending on the dose and identity of the prior ligand

(Figures 2A–2C and S4A–S4C). LPS, PAM, and IL-1b signaling

all utilize a MyD88-dependent signal transduction pathway,

including the shared signaling intermediary IRAK1 (Figure 1B)

(Kawasaki and Kawai, 2014). IRAK1 has been reported to regu-

late itself through auto-inhibitory phosphorylation, which limits

subsequent activation of IRAK1 by other stimuli (DeFelice

et al., 2019). Thus, we hypothesized that prior MyD88-depen-

dent signaling attenuates subsequent signaling in the same

pathway, but that TNF-a is independent from this inhibition.

To test this hypothesis, we focused on how a single prior

ligand affects the following response, i.e., how the S1 ligand

response changes the S2 ligand response (Figures 4A–4C).

The LPS response was delayed as both an S1 ligand and an

S2 ligand (Figures 4A–4C) despite sharing the same intracellular
Figure 4. Ligand- and dose-specific effects of prior history differenti

MyD88-dependent ligands

(A–C) NF-kB response dynamics over 2 h of stimulus for each ligand normalized

traces randomly selected for each condition. All sequences of S1 and S2 ligands

(D) Violin plot comparing the normalized S2 responses of the MyD88-dependen

dependent ligand (red) or the TNF-a response following a MyD88-dependent lig

(E) Violin plot comparing the normalized S2 MyD88-dependent responses followin

(>340 cells per condition). Bonferroni corrected Wilcoxon rank-sum test; n.s. p >

sample means >1 (#), >1.25 (##), or >4 (###).

(F) Plot of mean trace for conditions where LPS is provided at 0 min (gray arrow

arrowhead). Gray region and red regions of trace indicate NF-kB response during L

traces in the left column show an only IL-1b response and entirely gray traces in th

single cells from 2 biological replicates.

(G) Plot of mean traces for conditions where 0.2 and 3 ng/mL (mid and high dose)

dose) LPS, respectively, after the indicated time. Gray region and red region

replacement with LPS, respectively. As in (F), entirely red traces in the left column

only IL-1b response. Each mean trace represents >100 single cells over 2 biolog

(H) Violin plot comparing the normalized response for 3 ng/mL IL-1b following 100

plot is derived from >100 cells per condition over 2 biological replicates. Open c
molecular pathway as PAM and IL-1b (Adelaja et al., 2021; Kel-

logg et al., 2017; Werner et al., 2005). This feature has been

linked to ligand-specific control of IKK activation dynamics,

and has been proposed to be due to modulation of IKK cycling

rates (Behar and Hoffmann, 2013; Werner et al., 2005). Indeed,

we found that different IKK cycling rates could result in the de-

layed LPS response we observed experimentally (Figure S7E).

We found that, following TNF-a stimulus, the response to

MyD88-dependent ligands was weakly attenuated (Figure 4D,

blue). Likewise, the response to TNF-a following MyD88-depen-

dent stimuli was weakly attenuated (Figure 4D, green). In

contrast, MyD88-dependent ligands attenuated subsequent

signaling by other MyD88-dependent ligands in a dose-depen-

dent manner (Figure 4D, red). At high and mid doses, exposure

to MyD88-dependent ligands resulted in significantly attenuated

signaling from other MyD88-dependent ligands compared with

previous TNF-a exposure. Taken together, these results indicate

that a prior history of TNF-a signaling minimally affected MyD88-

dependent signaling and vice versa, while a prior history of

MyD88-dependent signaling inhibited the response to other

MyD88-dependent ligands in a dose-dependent manner.

If shared negative feedback is the primary cause of attenua-

tion for subsequent MyD88-dependent signaling, each MyD88-

dependent ligand should equally attenuate subsequent

MyD88-dependent ligands. Although LPS is known to also utilize

a MyD88-independent module mediated by TRIF and TRAM

(Fitzgerald et al., 2003; Yamamoto et al., 2003), we found that

the MyD88-independent pathway for LPS had minimal influence

in these cells, as knocking outMyD88was sufficient to abolish all

response to LPS (Figures S5A–S5C). Thus, we expected LPS,

PAM, and IL-1b to equally inhibit the response to each other.

At high dose, all three MyD88-dependent ligands indeed

strongly attenuated subsequent responses (Figure 4E). In

contrast, at mid and low doses, only LPS strongly attenuated

subsequent MyD88-dependent signaling (Figure 4E, red), while

IL-1b and PAM allowed significantly stronger subsequent re-

sponses (Figure 4E, blue, green). Thus, at high dose, attenuation

between LPS, PAM, and IL-1b occurred symmetrically, while at

mid and low doses, attenuation became asymmetric. Prior LPS

stimulus inhibited subsequent IL-1b/PAM response but not
ate TNF-a from MyD88-dependent ligands and differentiate among

to the mean amplitude of the naive (S1) high-dose response. Fifty single-cell

shown. All nine sequences shown at high (A), mid (B), and low (C) dose.

t ligands (LPS, PAM, IL-1b) following either TNF-a (blue) or another MyD88-

and (green) (>650 cells per condition). Open circles and lines show the mean.

g IL-1b (blue), PAM (green), and LPS (red) stimulus at high, mid, and low doses

10�2, *p < 10�2, **p < 10�3, ***p < 1 3 10�4. Fold change difference between

head) and switched to 3 ng/mL (high dose) IL-1b after the indicated time (red

PS stimulus interval and after replacement with IL-1b, respectively. Entirely red

e right column show an only LPS response. Each mean trace represents >100

IL-1b are provided at 0 min and switched to 100 and 400 ng/mL (mid and high

s of trace indicate NF-kB response during IL-1b stimulus interval and after

show an only LPS response and entirely gray traces in the right column show an

ical replicates.

ng/mL LPS or the response for 100 ng/mL LPS following 0.2 ng/mL IL-1b. Each

ircles and lines show the mean. See also Figures S5, S6A, and S6B.

Cell Reports 40, 111159, August 16, 2022 7
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vice versa. Similarly, whenwe compared the JNK responseswith

MyD88-dependent ligands following either IL-1b or LPS stim-

ulus, we saw that symmetric attenuation took place at high

dose but, at mid dose, only LPS maintained strong attenuation

of MyD88-dependent JNK activation (Figures S5F–S5H). These

data reproduced the asymmetry in attenuation observed in our

NF-kBmeasurements and suggest that asymmetric prior history

effects may be broadly applicable in multiple inflammatory

signaling pathways. Despite the highly shared pathways be-

tween LPS, PAM, and IL-1b, prior LPS effects differ from prior

PAM or IL-1b effects in a dose-dependent manner.

Although our results suggest asymmetry in short-term history

effects between MyD88-dependent ligands, innate immune

signaling occurs on a range of timescales. Thus, we sought to

understand the temporal range under which this asymmetry per-

sists and extended the duration between S1 and S2 to 4, 6, and

8 h (Figures S5I–S5L). At these longer durations, we still

observed similar ligand and dose-specific attenuations. TNF-a

only weakly attenuated MyD88-dependent signaling through

IL-1b, while LPS and IL-1b attenuated each other symmetrically

at high dose. At mid dose, LPS still strongly attenuated IL-1b, but

not vice versa. At longer time intervals, both TNF-a-dependent

attenuation of IL-1b and IL-1b-dependent attenuation of LPS

strengthened, which suggests that longer duration stimuli may

weaken the asymmetry between ligand histories. Nonetheless,

the overall trends at increased duration were consistent with

our findings after 2 h of stimulus, which indicates that these ef-

fects persist at longer durations.

Slow LPS-dependent negative feedback induces
distinct attenuation in the subsequent stimulus
response
While auto-inhibition of IRAK1 can explain symmetric attenuation

at high ligand dose (DeFelice et al., 2019), as IRAK1 is shared by

each of the MyD88-dependent ligands (Figure 1B), it could not

explain our results atmid and lowdoses. Asymmetric cross-atten-

uation at mid and low doses suggests the existence of an addi-

tional negative feedback mechanism, which would be more

strongly activated by LPS stimulation than by IL-1b or PAM.

To study the characteristics of asymmetric attenuation of

MyD88-dependent signaling, we examined how rapidly attenua-

tion takes place upon stimulation with LPS. The timescale of

attenuation can inform where in a signaling network the feed-

back acts. For example, rapid attenuation is unlikely to be driven

by transcription and translation of downstream feedback genes.

We stimulated cells with various doses of LPS (12.5–400 ng/mL),

then stimulated the cells with high dose of IL-1b (3 ng/mL) after

10–120 min of LPS stimulus (Figures 4F and S6A). Attenuation

of IL-1b signaling by high-dose LPS (400 ng/mL) was fast and

strong, rapidly suppressing the subsequent IL-1b response at

all times except the shortest time interval (10 min). As IRAK1 is

shared in the early part of the signaling pathway, this observation

was consistent with rapid auto-inhibition of IRAK1. However,

following lower doses of LPS, the IL-1b response became grad-

ually attenuated depending on duration of LPS stimulus

(Figures 4F and 4H).

On the other hand, when we stimulated first with IL-1b, then

LPS, we did not observe gradual attenuation. Similar to high-
8 Cell Reports 40, 111159, August 16, 2022
dose LPS, high-dose IL-1b still produced immediate and strong

attenuation of the LPS response, suggesting that auto-inhibition

of IRAK1 still plays a major role in subsequent attenuation

(Figures 4G and S6B). Increasing duration of stimulus with

mid-dose IL-1b, however, had no impact on attenuation of LPS

signaling (Figure 4G). To compare the difference between prior

stimulation with LPS and IL-1b more clearly, we normalized the

responses to the second stimulus to the corresponding naive re-

sponses (Figure 4H). As expected, the response to IL-1b

following LPS gradually decreased over time, while LPS

response following IL-1b remained consistent over time. These

results suggest that an additional activation-time-dependent

negative feedback process is differentially regulated by each

MyD88-dependent ligand. This time dependence led us to hy-

pothesize that this additional feedback response relies on NF-

kB-dependent gene expression.

Ligand-specific attenuation in MyD88-dependent
signaling depends on activation of IKK
To test whether NF-kB translocation and subsequent gene

expression is necessary for asymmetric and ligand-dependent

attenuation, we targeted the signaling intermediary IKK. IKK con-

trols the activation and translocation of NF-kB into the nucleus

through degrading the inhibitory protein IkBa (Figure 1B). Using

PS1145, a reversible small-molecule inhibitor of the IKK-b sub-

unit (Yamamoto et al., 2003; Yemelyanov et al., 2006), we

blocked signaling downstream of IKK activation. Due to the

reduced activity of IKK, pretreating cells with 40 mM PS1145

significantly reduced NF-kB translocation by LPS stimulation

(Figures S6C and S6D). To test the impact of IKK inhibition for

attenuation of subsequent signaling events, we washed cells to

remove the drug after LPS stimulation and restimulated with

3 ng/mL (high dose) IL-1b. Cells treated with PS1145 showed

significantly stronger NF-kB responses to subsequent IL-1b

stimulus compared with untreated cells (Figure 5A). Thus, as-

pects of NF-kB signaling downstream of IKK activation, e.g.,

NF-kB nuclear translocation and NF-kB-mediated gene expres-

sion, play a major role in LPS-dependent attenuation of subse-

quent signaling. Through these inhibition studies, we show that

asymmetric attenuation ofMyD88-dependent signaling depends

on IKK activation and subsequent NF-kB nuclear translocation,

suggesting that this asymmetry depends on NF-kB-mediated

gene expression.

Mathematical modeling with two negative feedback
motifs reproduces ligand and dose-specific attenuation
Our data give rise to amodel where, at high dose, IRAK1 auto-in-

hibition results in symmetric attenuation of Myd88-dependent

signaling, while at moderate and low doses differential transcrip-

tion of downstream negative regulators produces asymmetric

attenuation. To study whether a network topology with these

two motifs is sufficient to reproduce our observed prior history

effects, we incorporated these two feedbacks into the NF-kB

network model supplemental information (STAR methods) and

studied the change in network dynamics when stimulated with

different ligand sequences.

To focus on the role of these two negative feedbacks, wemini-

mized the network topology by converging all kinases not
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Figure 5. Differential regulation of down-

stream feedback controls ligand specificity

of tolerance

(A) Violin plot comparing IL-1b maximum response

following LPS treatment normalized to naive for

untreated (blue) and PS1145 pre-treated (red) cells.

Pre-treated cells were exposed to 40 mM PS1145

stimulated with LPS at the indicated concentration,

washed, and stimulated with 3 ng/mL IL-1b. Each

condition shown from >120 single cells over 2 bio-

logical replicates. Bonferroni corrected Wilcoxon

rank-sum test; ***p < 1 3 10�4. Fold change differ-

ence between sample means >1.25 (##).

(B)Diagram illustrating theNF-kBnetworkmodelused

for the simulation. Two negative components, IRAK1

auto-inhibition and nuclear NF-kB-dependent attenu-

ation, are highlighted in red and orange. The TNF-a

signaling pathway (green) utilizes different kinases to

activate IKK than the MyD88-dependent ligands.

(C–E) Simulated network responses to different se-

quences of stimuli. The blue lines show the dynamics

of nuclear NF-kB, the red lines for active IRAK1, and

the orange lines for the downstream feedback

component. Gray dashed vertical line indicates time

of simulated replacement of ligands. See also

Figures S6C and S6D.
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involved in negative feedback or the translocation of NF-kB

(Krishna et al., 2006). Then, we expanded this minimal NF-kB

model by adding network components connecting three recep-

tors (TNFR, IL-1R, and TLR4) and incorporating auto-inhibition of

IRAK1 and ligand-dependent inhibition downstream of NF-kB

(Figure 5B). To model the greater transcription of negative regu-

lators following LPS stimulation compared with IL-1b and TNF-a

(Figures 5A and 6C) (Sen et al., 2020), we set the LPS-dependent

inhibition arising from NF-kB-dependent transcription to be

4-fold that of IL-1b or TNF-a. Even with these expansions, our

model uses only 20 parameters and successfully reproduced

our experimental observations (Figures 5C–5E). At high dose of
IL-1b or LPS, strong activation of IRAK1 re-

sulted in rapid inactivation, which pre-

vented NF-kB activation by subsequent

MyD88 ligands (Figure 5C). However,

TNF-a does not affect IRAK1 and only

weakly attenuates subsequent signaling

due to induction of downstream feedback

(Figure 5E).

In contrast, at mid dose, IL-1b induced

weaker activation of IRAK1 and resulted

in modest inactivation of itself, allowing

activation of IRAK1 by subsequent LPS

stimulus (Figure 5D). Partial inactivation of

IRAK1 by LPS stimulus combined with in-

duction of transcriptional feedback pre-

vented subsequent MyD88-dependent

signaling (Figure 5D). Thus, in this dose

range, differential engagement of down-

stream feedback plays a critical role in

differentiating LPS and IL-1b signaling

and promoting asymmetric response. In
addition, we simulated other six combinations of sequential

stimuli (Figure S7A), which reproduced the remaining experi-

mental results.

An alternative mechanism for attenuation is the saturation of

signaling molecules shared with the prior stimulus. This possibil-

ity is unlikely in our mid- and low-dose situations, as NF-kB

signaling was not saturated and clear asymmetry between li-

gands with comparable NF-kB responses existed. However, at

high dose, saturation of NF-kB signaling suggested that reser-

voirs of intermediaries may be depleted. While this is difficult

to test experimentally, our simulation suggests that this mecha-

nism may be possible. Negative feedback on IRAK1 occurs in
Cell Reports 40, 111159, August 16, 2022 9
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the form of auto-inactivation. As a result, high-dose stimulus trig-

gers rapid inactivation of the IRAK1 population, leading to deple-

tion of available IRAK1 (Figure S7B). Although reservoirs of

downstream modules, such as IKK, are still available, depletion

of IRAK1 prevents further activation through the MyD88-depen-

dent pathway (Figure S7B). Thus, saturation and depletion of

shared upstream intermediaries, such as IRAK1, may play a

role in attenuation under saturating signaling conditions. At mid

dose, however, both IRAK1 and IKK are available following

both IL-1b and LPS stimulus (Figures S7C and S7D). Our simula-

tion demonstrates how a simple network motif with a few nega-

tive feedbacks acting on different nodes can retain information

about stimulus history and coordinate subsequent inflammatory

signaling.

MyD88-dependent ligands differentially regulate NF-kB
response genes associated with negative feedback
Our computational and experimental results suggest that NF-

kB-induced negative feedbacks are differentially regulated by

MyD88-dependent ligands. To confirm this model, we profiled

gene expression through RNA sequencing following 2 h of stim-

ulation with mid-dose LPS, PAM, or IL-1b. Compared with unsti-

mulated cells, we found a total of 609 differentially expressed

genes (DEGs) following LPS stimulus, 166 following PAM stim-

ulus, and 108 following IL-1b stimulus (Table S1). Almost all

DEGs induced by IL-1b and PAM were also induced by LPS,

while DEGs by IL-1b and PAM showed little overlap (Figure 6A).

Differences in gene expression between these three ligands

were primarily driven by magnitude of up- or downregulation,

rather than regulation of different genes (Figure 6B). In general,

upregulation of gene expression by LPS was stronger than upre-

gulation by PAM, which was itself stronger than by IL-1b. These

differences in the magnitude of gene expression suggest that

MyD88-dependent ligands indeed differentially regulate expres-

sion of NF-kB response genes despite highly shared pathways.

We then focused on which genes were most differentially

regulated by MyD88 ligands. We found that many known nega-

tive regulators of NF-kB signaling were upregulated 2- to 4-fold

in response to LPS stimulus compared with IL-1b stimulus (Fig-

ure 6C). Many of these regulatory genes act to directly sequester

NF-kB or inhibit the activities of shared upstream signaling com-

ponents (Renner and Schmitz, 2009). Thus, these negative reg-

ulators likely affect subsequent signaling by other MyD88 li-

gands. We also found that the most differentially expressed

genes between LPS and IL-1b are signaling proteins, indicating

that these transcriptional differences give rise to different func-

tional outcomes between LPS and IL-1b signaling (Figure 6D).

For example, some of the most differentially regulated genes

were well-known proteins secreted by activated fibroblasts,

including the growth factors Csf2 and Csf3 and the cytokines

Cxcl2 and Cxcl3 (Bunting et al., 2007; Nishizawa and Nagata,

1990; Widmer et al., 1993).

It is surprising that LPS and IL-1b induce different gene

expression patterns despite similar intracellular pathways.

Ligand-specific NF-kB activation dynamics may be involved in

differentiating these expression patterns. LPS consistently pro-

duced a longer NF-kB activation duration than a comparable

dose of IL-1b (Figure S7F). The duration of NF-kB activation
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has been shown to differentially regulate transcription of NF-kB

response genes (Cheng et al., 2021; Sen et al., 2020), possibly

explaining differences between IL-1b- and LPS-induced gene

expression. However, longer activation duration also increases

the total nuclear NF-kB over time.

To examine if total nuclear NF-kB, as measured by the AUC of

the NF-kB response, can explain the differential gene expression

by different ligands, we quantified gene expression in cells stim-

ulated with mid-dose IL-1b and LPS (0.2 and 100 ng/mL, respec-

tively) and a higher dose of IL-1b (1 ng/mL). Mid-dose IL-1b pro-

duced lower AUC than mid-dose LPS did, while 1 ng/mL IL-1b

produced a similar AUC to mid-dose LPS (Figure 7G). If higher

total nuclear NF-kB explains stronger gene expression by mid-

dose LPS than by mid-dose IL-1b, 1 ng/mL IL-1b should induce

comparable downstream gene expression. Through qRT-PCR,

we profiled the transcription of three differentially expressed

negative feedback regulators, Nfkbia, Nfkbie, and Tnfaip3. We

found that, for Nfkbia and Tnfaip3, expression was significantly

increased in the 100 ng/mL LPS sample compared with both

0.2 and 1 ng/mL IL-1b samples (Figure 6E). A 0.2 ng/mL IL-1b

stimulus produced weaker expression of Nfkbia and Tnfaip3

compared with untreated cells after 2 h of stimulus. Because

these are early NF-kB target genes which are rapidly transcribed

and degraded following activation of NF-kB, this result is likely

due to targeted degradation after an initial burst of transcription

(Tay et al., 2010). Importantly, even 1 ng/mL IL-1b stimulus,

which induced comparable NF-kB response AUC to mid-dose

LPS, did not increase transcription of negative regulators of

NF-kB to the level of LPS stimulation.

Similarly, we profiled five secreted proteins that were also

highly differentially expressed between LPS and IL-1b stimulus,

Csf2, Csf3, Cxcl2, Cxcl3, and Il23a. Each of these genes except

Csf3 was significantly upregulated following LPS stimulation

compared with both IL-1b doses. These results suggest that

AUC cannot explain the differential downstream expression we

observed, but that NF-kB dynamic features, likely including acti-

vation duration, drive the differential downstream expression be-

tween LPS and IL-1b. Similar to what we observed using qPCR,

the greater number of DEGs following LPS stimulus may be ex-

plained by the difference in activation duration between the LPS

and IL-1b response. Overall, our downstream analyses demon-

strate that eachMyD88-dependent ligand differentially regulates

downstream gene expression, and that differences in negative

feedback expression can store prior ligand information to control

subsequent NF-kB signaling.

DISCUSSION

Cells involved in innate immunity must interpret a complex and

evolvingmilieu of extracellular cytokines and pathogenic signals.

Despite the temporal features of these challenges, how prior his-

tory of inflammatory stimulus reshapes cellular responses to

subsequent stimuli remains unclear. Here, we combined micro-

fluidics and live-cell tracking of canonical NF-kB signaling to

track the effects of complex stimulus patterns on inflammatory

signaling over the course of hours.

Our results showed that different levels of overlap between

ligand pathways and negative feedback modules encode
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Figure 6. Myd88-dependent genes differentially regulate downstream cytokines and negative feedback regulators

(A) Venn diagram showing overlap of differentially expressed genes (DEGs) between IL-1b, LPS, and PAM after 2 h of stimulus.

(B) Heatmap of DEGs for MyD88-dependent ligand-treated cells. RNA sequencing was performed in triplicate. Each row shows the normalized expression

(Z score) of a single gene. Dendrogram shows linkage based on Ward’s method.

(C and D) Volcano plot showing log2(fold change) and –log10(p value) for DEGs between LPS and IL-1b stimulus Among the DEGs with adjusted p < 0.01 and fold

change >4, genes annotated as NF-kB negative regulators (GO:0032088) (C) or cytokines (GO:0005125) (D) are colored in red. All differentially expressed

regulators and top 10 differentially expressed cytokines are labeled.

(E) qRT-PCR data following for a subset of highly differentially expressed cytokines and NF-kB negative regulators stimulation with 0.2 ng/mL (light blue), 1 ng/mL

(dark blue) IL-1b, or 100 ng/mL LPS (red). Gene expression is normalized to basal gene expression for unstimulated cells. Data shown as mean fold change over

unstimulated cells ± SEM from three replicates. Benjamini-Hochberg adjusted *p < 0.05 or **p < 0.01. See also Figure S7 and Table S1.
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Figure 7. Exposure to inflammatory ligands triggers shared feedbacks to alter subsequent ligand responses

Naive cell (gray) activates in response to different inflammatory ligands, which each induce characteristic feedback responses. LPS (red cell) induces upstream

and downstream negative feedback, IL-1b (yellow cell) primarily induces upstream negative feedback, and TNF-a induces negative feedback, which primarily

acts orthogonally to the other ligands. As a result, response to a subsequent IL-1b stimulus becomes attenuated in a ligand-specific manner and produces

memory-informed NF-kB responses.
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information about prior history and shape response to subse-

quent ligands. TNF-a permits signaling from subsequent ligands

and is least affected by prior stimulus history. In contrast, prior

history between MyD88-dependent ligands is differentiated by

dose-dependent engagement of shared IRAK1 auto-inhibition

and ligand-dependent production of downstream negative feed-

backs. The combination of these three network features differen-

tiates response dynamics to subsequent ligands based on prior

history, even between highly shared pathways, such as IL-1b

and LPS.

Thus, we propose a model of acute memory of prior history in

the NF-kB network where ligand-specific engagement of nega-

tive feedbacks acts on nodes of the NF-kB network shared

with subsequent ligands (Figure 7). Memory reshapes the

response to the subsequent stimulus, resulting in significantly

different NF-kB activation dynamics. While these dynamics

have been extensively shown to control transcriptional out-

comes and cell fate (Cheng et al., 2021; Purvis et al., 2012;

Sen et al., 2020), we show that they can reflect state changes

due to prior stimuli. In future study of innate immune memory,

feedback and dynamics in signaling networks should therefore

be considered as potential regulatory mechanisms for biological

function.

It is notable that we primarily observe tolerance in the time-

scales studied, especially as priming has been described using

the same ligands (Deng et al., 2013; Fu et al., 2012). These

studies, however, describe priming at long time intervals (>24

h) in macrophages. Although the circuit topologies we study

give rise to short-term tolerance due to the negative feedback,

it may be possible that pathway crosstalk and chromatin/DNA
12 Cell Reports 40, 111159, August 16, 2022
modifications give rise to long-term priming. Furthermore, pro-

posed circuit motifs for priming involve crosstalk between the

NF-kB pathway and orthogonal pathways not present in fibro-

blasts (Fu et al., 2012). In myeloid cells, the regulation of innate

immune memory by feedback-dependent alteration of NF-kB

dynamics may be further enhanced by cell-type-specific sour-

ces of negative and positive feedback (Deng et al., 2013; Jans-

sens et al., 2003). Nonetheless, we show that regulation of the

magnitude of tolerance is sufficient to encoding memory of prior

stimuli.

Thus, our finding that acute prior history effects are encoded in

the dynamic NF-kB response also presents a form of innate im-

mune memory that acts directly on signal transduction path-

ways. In addition to epigenetic effects acting on the accessible

chromatin landscape of the cell, which occur over days, innate

immunememory can also be encoded by NF-kB dynamics regu-

lated through rapid feedback responses in the upstream

signaling network.

Limitations of the study
In this work, we focus on the effect of prior ligands on subse-

quent ligands of the same approximate dose. It may be possible

that additional memory effects may be observed if ligands and

doses are mixed in a systematic manner, as the NF-kB network

has been shown to exhibit ligand-specific dose-sensing mecha-

nisms (Son et al., 2021). Furthermore, specialized sentinel cells,

such as macrophages and dendritic cells express a far more

complete set of receptors and network components that encode

responses to inflammatory stimuli (Janssens et al., 2003; Ko-

bayashi et al., 2002). Future study of feedback dynamics will
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need to consider the ways in which these specialized cell types

may differentially encode memory of prior stimuli. Future exper-

iments using primary tissue from transgenic mice expressing

endogenously tagged signaling reporters will be vital to this

work (Adelaja et al., 2021; Pokrass et al., 2020). Ultimately, rele-

vance of memory encoding in NF-kB dynamics will require

demonstration that these types of memory encoding occur in

physiologically relevant contexts. These studies will likely require

in vivo physiological models of disease and intravital imaging of

NF-kB dynamics.
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Nextera XT DNA Library Preparation Kit Illumina FC-131-1024

Deposited data
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Trace/microscopy data reported in this paper This study Github: https://github.com/tay-lab/Sequential_

NF-kB_stim; Zenodo:

https://doi.org/10.5281/zenodo.6626195

Experimental models: Cell lines

p65-/- p65-DsRed JNK-KTR NIH3T3 mouse
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Markus Covert (Stanford) N/A
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matlab.html

RStudio Build 372 RStudio https://www.rstudio.com/
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Lead contact
Further information and requests for resources and reagents should be directed to the lead contact, Professor Savasx Tay (tays@

uchicago.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d RNA-seq data have been deposited at GEO and are publicly available. Accession number is listed in the key resources table.

Original western blot images are included in the Supplemental Figures. Microscopy data reported in this paper will be shared by

the lead contact upon request.

d All original code and analyzed image data necessary to reproduce the figures has been deposited inGithub and is publicly avail-

able as of the date of publication. The link to the Github repository and the Zenodo DOI are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cells
RelA-/- NIH3T3 immortalized mouse embryonic fibroblasts (3T3s) stably expressing RelA-DsRed, JNK-kinase translocation reporter-

mCerulean3 (JNK-KTR) (Regot et al., 2014), and histone 2B-green fluorescent protein (H2B-GFP) were cultured with Dulbecco’s

Modified Eagle Medium – High Glucose (DMEM; Gibco) supplemented with 10% fetal bovine serum (Omega Scientific), 1%

GlutaMAX (Gibco), and 100 u/mL penicillin-streptomycin (Gibco) in tissue-culture treated flasks. Cells were cultured in a tissue cul-

ture incubator maintained at 37�C and 5% CO2. Cells were passed prior to reaching 100% confluency and maintained for no more

than 15 passages.

METHOD DETAILS

Microfluidic device design and fabrication
A previously designed and published cell culture device was utilized for automated cell culture and ligand stimulus (Son et al., 2021).

The design contains 14 unique stimulus inputs and 64 independently controlled cell culture chambers measuring

3.53 0.83 0.035mm, where each can loadmore than 500 cells. Master molds for this chip were fabricated by patterning photoresist
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deposited on silicon wafers through multilayer soft lithography (Gómez-Sjöberg et al., 2007). Microfluidic devices were fabricated by

pouring polydimethylsiloxane (PDMS; Momentive, RTV-615) on the control and flow master molds and bonding these two layers.

Control layer wafers were poured with 66 g PDMS (10:1 monomer to catalyst), air bubbles removed under vacuum, and cured at

80�C overnight to make a �2 cm thick PDM slab with the control pattern grooved on the bottom. Flow layer wafers were poured

with 15 g PDMS (10:1 monomer to catalyst) and spun at 2200 rpm to achieve a thickness of �50 mm and cured at 80�C for at least

1 h. After curing, holes intended for control pins were punched in the control layer, both PDM layers were treated with oxygen plasma

(Harrick, PDC-001), aligned using a custom stereomicroscope, and the aligned chip were baked at 80�C overnight. After bonding,

holes intended for fluid input and output were punched; then the chip was bonded to a glass slide through plasma treatment and

baking. A detailed fabrication protocol can be found in our previous publications (Kellogg et al., 2014; Son et al., 2021).

Microfluidic experiment setup
Device control layer inputs were connected to pneumatic solenoid valves with electronic controller boxes. By actuating different sets

of valves, flow pathways in the microfluidic device can be directed from a particular input to a particular chamber using pre-written

MATLAB scripts and a custom-developed graphic user interface (GUI). The device was mounted on a microscope (Nikon) and cell

chambers were filled with 0.25 mg/mL fibronectin (Millipore) in sterile pH 7.4 phosphate buffered saline (PBS, Gibco), and incubated

overnight at room temperature. Subsequently, chambers and channels were flushed with complete medium to replace the fibro-

nectin, then the temperature, humidity, and CO2 in the live imaging apparatus (Life Imaging Services) were set to 37�C, 100% humid-

ity, and 5% CO2 to optimize cell culturing in the microfluidic device. Cells were harvested with trypsin, washed with complete

medium, and resuspended at �5*106 cells/mL in FluoroBrite DMEM (Gibco) with the same supplements to reduce background fluo-

rescence. Cells were loaded at approximately 50% confluency to optimize tracking efficiency, and cells were allowed to settle and

equilibrate for 5 h prior to start of stimulation and imaging.

Stimulus conditions
Four ligands, mouse tumor necrosis factor alpha (TNF-a; R&D Systems, aa 80-235), mouse interleukin 1 beta (IL-1b; R&D Systems,

401ML010CF), ultrapure lipopolysaccharide (LPS) from E. coli (InvivoGen, tlrl-3pelps), and PAM2CSK4 (PAM; InvivoGen, tlrl-pm2s)

were utilized in this study. Based on experimental quantification of NF-kB translocation following titration of each ligand, we selected

high, mid, and low doses of each ligand with comparable activation (TNF-a: 90, 30, 3 ng/mL; IL-1b: 3, 0.2, 0.05 ng/mL; LPS: 400, 100,

12.5 ng/mL; PAM: 1, 0.1, 0.01 ng/mL). For each set of high, middle, and low dose ligands, all non-repeating combinations of the four

ligands were supplied at 2-h intervals, producing 24 conditions per dose over 8 h. One condition wasmaintained as a positive control

(mid dose TNF-a, IL-1b, LPs, PAM) and one condition maintained as a negative control (4 feedings of complete media). For other

experimental conditions, ligands were provided and switched at the indicated dose at the indicated time. Ligand dilutions were

made from stock solutions stored at �80�C immediately prior to stimulus, stored on ice during the duration of the experiment,

and delivered to the chip through polyetheretherketone tubing (VICI, TPK.505). Input pressure was maintained at 4 psi to prevent

shear stress on cells during feeding. For IKK inhibition experiments, PS1145 (Tocris, 4569) was diluted in complete media to

40 mM. Cells were pretreated with PS1145 for 90 min, then exposed to media containing PS1145 and LPS for 4 h, washed for

30 min in complete media, and stimulated with IL-1b (3 ng/mL). Other detailed protocols for the microfluidic experiment can be found

in our previous publications (Kellogg et al., 2014).

Image acquisition and analysis
Epifluorescence images were acquired using a Nikon Ti2 microscope enclosed within a temperature-controlled incubator (Life

Imaging Services). Images were captured at 20X magnification through a complementary metal-oxide semiconductor camera (Ha-

mamatsu, ORCA-Flash4.0 V2) every 6 min. Each chamber position was imaged for p65-DsRed (555-nm excitation, 0.5-1 s exposure

time), H2B-GFP (485-nm, 50-100 ms), and/or KTR-JNK-mCerulean3 (440-nm, 100 ms). No photobleaching or phototoxicity was

observed over the course of the imaging process. For the time resolved experiments switching from LPS to IL-1b, imaging was con-

ducted every 3 min instead in order to increase the temporal resolution of the trace.

Prior to image processing, background fluorescence and dark frame images were taken for flat field correction. Nuclear and cyto-

plasmic DsRed and/or mCerulean3 fluorescence for single cells were evaluated over the course of the experiment by analyzing time

course fluorescence imageswith customdeveloped software (MATLAB). Briefly, H2B-GFP imageswere used to segment the nuclear

region for each cell, whose positions were tracked over the entire sequence of time course images. Combining these single cell tra-

jectories with the DsRed andmCerulean3 images, we quantified the median nuclear fluorescence in the nucleus , which represented

the nuclear NF-kB level, and normalized this fluorescence to the median cytoplasmic fluorescence evaluated from a ring of cyto-

plasm located around the segmented nuclear image (Kudo et al., 2018). To quantify the background fluorescence, a few small regions

without cells were randomly selected, and their mean fluorescence were evaluated and subtracted from the corresponding fluores-

cence measurement. The resulting traces were processed using another custom-developed analysis software to remove traces dis-

playing cell death, division, or other features which impact data quality. Only traces which were complete over the entire course of

each experiment were retained for subsequent analysis.

Key trace features were extracted using custom software (MATLAB). The frame of the maximum RelA or JNK-KTR response in a

stimulus interval was identified using a trace smoothed with the lowess method with a span size of 3 to reduce noise from cell
e3 Cell Reports 40, 111159, August 16, 2022



Article
ll

OPEN ACCESS
movement, slight changes in imaging focus, or background fluctuations. Frames identified from the smoothed trace were then used

to identify the true maximum fluorescence in the un-smoothed trace. To account for the possibility of oscillations in nuclear trans-

location,multiple local maximawere allowedwith aminimumdistance betweenmaxima of 5 frames (30min). To distinguish truemax-

ima from noise due to frame-by-frame fluctuation in nuclear fluorescence, we set the 95th percentile of maxima identified from

unstimulated cells as the cutoff and set all stimulusmaxima below that cutoff to be zero. Area under the curve (AUC) for each stimulus

interval was calculated by taking the trapezoidal approximate of the integral for each trace in the defined time interval.

CRISPR-Cas9 knockout of MyD88
A Myd88-targeting guide RNA (5’-TCGCGCTTAACGTGGGAGTG-3’) was cloned into the pX330 plasmid backbone (Addgene

Plasmid #42230) and transfected using electroporation (Lonza) into 3T3s. 48 h post-transfection, single cells were sorted into a

96-well plate and allowed to grow into clonal populations. Screening by Sanger sequencing identified three clones with frameshift

mutations in one or both copies of the gene. Successful knockout was confirmed with western blot probing for MyD88 (1� rabbit

anti-MyD88 1:1000, Cell Signaling Technologies. 2� goat anti-rabbit DyLight 800 1:25000), following which the blot was stripped

and reprobed for b-actin as a loading control (mouse anti-b-Actin DyLight 680, 1:1000). Blots were imaged on a LICOR scanner

on the 700 and 800 nm channels.

Cell retrieval from microfluidic device for downstream gene measurements
To facilitate retrieval of cells, the corner of themicrofluidic device with the outlet was cut to expose the outlet channel. At the indicated

time following stimulation, cells in the target chamber were treated with TrypLE Express (Gibco) for �1 min to detach them from the

treated surface, then sent to the outlet channel by washing with PBS. Detached cells accumulated at the outlet channel, were

removed in a�2 uL droplet bymanual pipetting, and deposited in 10 uL ice-cold lysis buffer containing 0.1%Triton-X 100 and RNase

inhibitor (Takara) and stored at �80�C until further processing. Approximately 1500 cells were retrieved per replicate per condition.

Library preparation and RNA-sequencing
Sample prep for RNA-sequencing followed the SMART-Seq2 pipeline for single cells. Briefly, cell lysate was incubated at 72�C with

oligo-dT30VN to anneal, followed by the rest of the SMART-Seq2 reverse transcriptase mix and incubated at 42C for 90 min followed

by 10 cycles between 50�C and 42�C to unfold secondary structure. Template switching using a modified TSO oligo (50-AA
GCAGTGGTATCAACGCAGAGTGAATrGrGrG -30) provided a PCR handle on the 30 end of the newly synthesized cDNA strand. 6 cy-

cles of single primer preamplification with KAPA HiFi (Roche, primer: AAGCAGTGGTATCAACGCAGAGT), and purification with Am-

pure XP beads (1:1 ratio, Beckman Coulter) produced a purified cDNA library. Library prep was performed by the University of Chi-

cago Genomics Facility using the Nextera XT procedure. Samples were then single end sequenced in the same facility on an Illumina

HiSEQ4000 with a read length of 50 bp. Adapter trimming and read mapping to the reference mouse genome (GRCm38) was done

using STAR using default parameters. Transcript abundance was quantified using featureCounts. Raw counts were normalized and

differential gene expression identified using the R packages edgeR and limma. Differential genes were identified between IL-1b and

untreated, PAM and untreated, LPS and untreated, and IL-1b and LPS using cutoffs of Benjamini-Hochberg false discovery rate

(FDR) < 0.01 and log fold change >1.

cDNA synthesis and qPCR
Targeted reverse transcription and preamplification were done using a CellDirect One-Step RT-qPCR kit (Themo Fisher). qPCR

was performed with custom primer/probe sets (Tnfaip3, FWD: GCAGCTGGAATCTCTGAAATCT, REV: AGTTGTCCCATTCG

TCATTCC, PRB:/56-FAM/AAACAGGAC/ZEN/TTTGCTACGACACTCGG/3IABkFQ/), predesigned IDT PrimeTime probe assays

(Csf2: Mm.PT.58.10456839, Csf3: Mm.PT.58.43222334.g, Cxcl2: Mm.PT.58.7603454.g, Cxcl3: Mm.PT.58.45877295.g, Il23a:

Mm.PT.58.10594618.g, Gapdh: Mm.PT.39a.1), or predesigned TaqMan probe assays (Nfkbia: Mm00477798_m1, Nfkbie:

Mm01269649_m1). Ct values were calculated using software defaults and normalized to glyceraldehyde-3-phosphate dehydro-

genase (GAPDH) expression to produce DCt values. DCt values were subtracted from the DCt values from control samples to

calculate the DDCt as a proxy for fold change expression over control.

NF-kB network simulation
Building system of equations

To investigate if the two negative feedback model (Figure 4C) is sufficient for the ligand history effect, we built a simplified network

simulation. We extended the previous minimal NF-kB model (Krishna et al., 2006), which comprises three coupled differential equa-

tions each describing the dynamics of nuclear NF-kB (Equation 1), mRNA of IkBa (Equation 2), and cytoplasmic IkBa (Equation 3).

Previous studies report that nuclear NF-kB activates the transcription of downstream gene in a sigmoidal fashion with sharp

threshold (Kellogg and Tay, 2015; Phelps et al., 2000). Thus, we adapted the Hill function to describe mRNA transcription and applied

a Hill coefficient of four to accurately describe the dynamics (Equation 2). Our study involved various ligand stimuli, where each cor-

responds to different receptor and involves various cytoplasmic kinases for NF-kB activation. However, all signaling pathways

converge on an essential mediator, IKK, prior to NF-kB translocation (Hayden and Ghosh, 2012). Upon activation, neutral IKK be-

comes active IKK and degrades IkBa initiating NF-kB translocation. Active IKK gradually becomes inactive IKK, which then cycles
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back to the neutral state over time (Behar and Hoffmann, 2013). We added two differential equations to describe this cycling of IKK

(Equations 10 and 11). Then, we incorporated the two negative feedbacks discussed in our study. Upstream of IKK, MyD88-depen-

dent ligands (LPS or IL-1b) converge on another common kinase, IRAK1/4, which was shown to have auto-inhibitory negative feed-

back function reliant on aggregation (DeFelice et al., 2019). To integrate this important upstream negative feedback, we added

IRAK1/4 activation and inactivation dynamics for each MyD88-dependent receptor (Equation 6–9). To minimize variables, we

assumed that the activation and inactivation rates by different receptors are the same, and thus that IRAK1 kinetics depend only

on the amount of each receptor in the active state. Since the inactivation rate varied by the amount of active IRAK, wemade the inac-

tivation term non-linear, where the inactivation rate is proportional to the squared concentration of active IRAK. Another important

negative feedback originates downstream of NF-kB. Other than IkBa, previous works report many downstream genes, which inhibit

nuclear NF-kB in various ways (Renner and Schmitz, 2009). Among them, several inhibitors target upstream of IKK, where many

negative feedbacks including A20, SOCS-1/3, and Trim30a, repress the receptor activity and thereby hinder the activation of IKK.

Hence, we added the expression of the downstream negative inhibitor (Equations 4 and 5) and adjusted the IKK activation term in

Equation 10 to incorporate this effect. The Hill coefficient of 3 in this inhibition term includes the high cooperativity that arises in

the complex interactions between upstream molecules. For example, for A20 to be fully active, it not only needs to be dimerized

but also needs other adaptor proteins to inhibit the phosphorylation of IKK (Shembade et al., 2010). Additionally, IKK has multiple

phosphorylation sites, which may require multiple inhibitor complexes to successfully repress the IKK activation (Delhase et al.,

1999). Lastly, for the amount of activate ligand receptors, we normalized the dose range of ligand such that similar dose would acti-

vate similar number or ratio of receptors. For simplicity, we applied fast equilibrium approximation for the receptor dynamics, i.e., at

any given time the activity of receptor simply corresponds to the dose of ligand (Equation 12–14). All receptors investigated in our

study require multimerization to be active (Kawasaki and Kawai, 2014; Wajant and Scheurich, 2011); hence, we used non-linear rela-

tionship between the dose and the active receptor. The system of equations for our model is listed below:

dNn

dt
= rNim � 1 � Nn

KIc + I
� rIim � I � Nn

KIn +Nn

(Equation 1)
dIm
dt

= trI � N4
n�

K4
N +N4

n

� � dIm � Im (Equation 2)
dI

dt
= tlI � Im � aIKK � IKKa � ð1 � NnÞ � I

KIc + I
(Equation 3)
dAm

dt
= trA � N4

n

K4
N +N4

n

� dAm � Am (Equation 4)
dA

dt
= tlA � Am � dA � A (Equation 5)
dIRAKLPS

dt
= aIRAK � RLPS � ð1 � IRAKLPS � IRAKiLPS � IRAKIL1 � IRAKiIL1Þ � dIRAK � IRAK2

LPS (Equation 6)
dIRAKiLPS
dt

= dIRAK � IRAK2
LPS � dIRAKi � IRAKiLPS (Equation 7)
dIRAKIL1

dt
= aIRAK � RIL1 � ð1 � IRAKLPS � IRAKiLPS � IRAKIL1 � IRAKiIL1Þ � dIRAK � IRAK2

IL1 (Equation 8)
dIRAKiIL1
dt

= dIRAK � IRAK2
IL1 � dIRAKi � IRAKiIL1 (Equation 9)
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dIKKa

dt
= ð1 � IKKa � IKKiÞ � aR �

 
RTNF � C3

C3 +A3
+ IRAKLPS � C3

C3 +A3
+ IRAKIL1 � C3

C3 +A3

!
� m � IKK2

a (Equation 10)
dIKKi

dt
= m � IKK2

a � b � IKKi (Equation 11)
RTNF =
TNF3

TNF3 + 1
(Equation 12)
RLPS =
LPS3

LPS3 + 1
(Equation 13)
RIL1 =
IL13

IL13 + 1
(Equation 14)
Values for parameters
Even though our model consists of the two negative feedbacks andmultiple receptors, wemanaged to reduce the number of param-

eters to twenty. Roughly half of these are related to NF-kB and IkBa dynamics. The other half describes the newly added mecha-

nisms, which involve dynamics of IKK cycling and negative feedback regulations. Since our model is based on the minimal model

from the previous publications, we adapted parameters from them to where applicable. For the newly added components, we

assumed or fitted the parameters to the period of NF-kB oscillation (�2h). The list of parameters and their values are described in

the table (Hoffmann et al., 2002; Krishna et al., 2006; Son et al., 2021; Tay et al., 2010).
Description Parameter Value Unit Reference

Importation rate of cytosolic NF-kB into nucleus rNim 11.3 mM$h�1 Hoffmann et al., 2002

Dissociation constant for IkBa binding to NF-kB in cytosol KIc 3.5 3 10�2 mM Krishna et al., 2006

Importation rate of cytosolic IkBa into nucleus rIim 1.09 h�1 Hoffmann et al., 2002

Dissociation constant for IkBa binding to NF-kB in nucleus KIn 2.90 3 10�2 mM Krishna et al., 2006

Transcription rate of IkBa mRNA trI 59.5 mM$h�1 Hoffmann et al., 2002

Dissociation constant for nuclear NF-kB inducing

downstream transcription

KN 0.6 mM fitted

Degradation rate of IkBa mRNA dIm 2.00 h�1 Krishna et al., 2006

Translation rate of IkBa tlI 14.4 h�1 Hoffmann et al., 2002

Degradation rate of IkBa by active IKK aIKK 126 mM�1$h�1 Hoffmann et al., 2002

Transcription rate of downstream feedback mRNA trA 5.0 mM$h�1 fitted

Degradation rate of downstream feedback mRNA dAm 1.0 h�1 Tay et al., 2010 and Son et al., 2021

Translation rate of downstream feedback proteins tlA 15.0 h�1 fitted

Degradation rate of downstream feedback proteins dA 0.25 h�1 fitted

IRAK activation rate by active MyD88-dependent receptor aIRAK 252 h�1 fitted

IRAK inactivation rate dIRAK 200 mM�1$h�1 fitted

Rate for inactive IRAK to go back to neutral state dIRAKi 0.005 h�1 fitted

Rate for either active TNFR or IRAK activating neutral IKK aR 4.00 h�1 assumed

Dissociation constant for downstream feedback inhibiting

IKK activation

C 8.0 mM�1$h�1 fitted

Inactivation rate of active IKK m 28.3 mM�1$h�1 fitted

Rate for inactive IKK going back to neutral state b 0.2 h�1 fitted
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Running simulations

Computer simulations were performed using Python. The differential equations were integrated using odeint from scipy.integrate

solver. To determine the basal stationary state of the network prior to stimulation, a short pulse of TNF-awas introduced at the begin-

ning, then the dynamic of each component in the network was monitored up to 48 h after the pulse. After confirming the dynamics of

all components became stationary, we stimulated the network with one of the first ligands (TNF-a, IL-1b, or LPS), then replaced it with

another ligand after 2 h. Simulated dynamics of different components were plotted using Bokeh visualization library.

To simulate the difference in the expression level of the downstream negative feedback, we adjusted the dissociation constant for

the inhibition of IKK activation (parameter C). If we added the different downstream expression parameters for each ligand, it would

dramatically increase the number of parameters necessary to describe the dynamics of downstream negative feedback. To simply

model differential strength of IKK inhibition, we adjusted the dissociation constant for IKK inhibition. For LPS stimulation, the disso-

ciation constant was reduced by four-fold, meaning the threshold for negative feedback molecules to inhibit the IKK activation is

reduced by four-fold. This waywe could still monitor the effect from the different downstream negative feedback strength, while mini-

mizing the number of parameters.

Information theory analysis
For the information theory analysis, we employed the method and codes developed by Selimkhanov et al. (Selimkhanov et al., 2014).

After obtaining the dynamics of NF-kB translocation in each cell, the nuclear NF-kB level at multiple time points were extracted and

used as response (variable R) to evaluate the mutual information (variable I). Briefly, the mutual information is equal to the difference

between the entropy of entire response (i.e., non-conditional entropy) from all samples and the sum of entropies from response in

each sample (conditional entropy) (Shannon, 1948):

IðR;SÞ = HðRÞ � HðRjSÞ
where I indicates the mutual or transfer information and H indicates the entropy. Thus, I describes the reduction of uncertainty in

‘guessing’ which sample the response came from after observing the response. However, each sample may have different proba-

bility of happening. For example, in the case of this study, cells may be exposed a particular ligand sequence more frequently than

other sequences. The conditional entropy can fluctuate depending the probability of each sample (or ligand sequence). However, it is

still possible to evaluate the theoretical maximum information transfer possible through the given system. This is defined as channel

capacity, C, and can be evaluated by finding a set of probabilities that would maximize the mutual information:

CðR;SÞ = max
Q

IðR;SÞ
(X

i

qi = 1

qi R 0

whereC indicates the channel capacity,Q is a set of probabilities form samples, [q1, q2,.... qm]. Further details about the calculating

entropies and how the mutual information was maximized can be found in the previous publication (Selimkhanov et al., 2014). In this

study, the NF-kB levels at multiple time points during each ligand interval in each sample were used as input (variable R) to calculate

the channel capacity of NF-kB network in distinguishing a particular ligand at each step (S1-4) or prior history of ligand.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using MATLAB for data from image analysis or R for data from qPCR measurements and RNA-

seq. Data from images were analyzed using Bonferroni corrected Wilcoxon Rank Sum Test due to non-normality of distribution

and are displayed as violin plots including all datapoints with mean highlighted and significance noted. qPCR data show

mean +/- S.E.M. and significance determined using Benjamini-Hochberg adjusted two-tailed t-tests. n for each experiment, sig-

nificance, and effect sizes are listed in figure legends.
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