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Abstract 20 

Proximity sequencing (Prox-seq) measures gene expression, protein expression, and protein 21 

complexes at the single cell level, using information from dual-antibody binding events and a 22 

single cell sequencing readout. Prox-seq provides multi-dimensional phenotyping of single cells 23 

and was recently used to track the formation of receptor complexes during inflammatory 24 

signaling in macrophages and to discover a new interaction between CD9/CD8 proteins on naïve 25 

T cells. The distribution of protein abundance affects identification of protein complexes in a 26 

complicated manner in dual-binding assays like Prox-seq. These effects are difficult to explore 27 

with experiments, yet important for accurate quantification of protein complexes. Here, we 28 

introduce a physical model for protein dimer formation on single cells and computationally 29 

evaluate several different methods for reducing background noise when quantifying protein 30 

complexes. Furthermore, we developed an improved method for analysis of Prox-seq single-cell 31 

data, which resulted in more accurate and robust quantification of protein complexes. Finally, 32 

our model offers a simple way to investigate the behavior of Prox-seq under various biological 33 

conditions and guide users toward selecting the best analysis method for their data. 34 

 35 

Introduction 36 

Advances in single cell sequencing have enabled unprecedented analyses of cellular 37 

heterogeneity in complex biological systems1,2. Single-cell RNA sequencing3 (scRNA-seq) is 38 

among the most widely used methods. However, because proteins are the effector molecules for 39 

the majority of biological functions, RNA data alone is not sufficient to investigate these protein 40 

functions thoroughly. Signaling events, for example, typically begin with receptor clustering, 41 
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protein phosphorylation, and other protein-protein interactions, all of which occur prior to 42 

transcription. 43 

To investigate the roles of protein interactions in greater depth, we recently developed a 44 

method called proximity sequencing (Prox-seq) for simultaneous quantification of mRNA, 45 

surface proteins and protein complexes at the single-cell level4. Prox-seq captures protein 46 

complex information in barcoded DNA oligonucleotides (oligos) using a proximity ligation 47 

assay5,6 (PLA). Each protein in Prox-seq is targeted by two DNA-conjugated antibodies, called 48 

Prox-seq probes A and B (Figure 1a). The DNA oligos on probes A and B are ligated only if two 49 

protein molecules are sufficiently close to each other. The result of this ligation is referred to as a 50 

“PLA product.” The ligation distance is expected to be 50-70nm7. In order to generate a PLA 51 

product, the oligo belonging to a Prox-seq probe A must ligate to the oligo belonging to a Prox-52 

seq probe B. Importantly, unligated probes do not contribute to the signal because both library 53 

preparation and sequence alignment require barcodes from both the A and B probe. Upon 54 

sequencing, the number of PLA products can be determined by counting the number of unique 55 

molecular identifiers (UMIs). Because of this design, the number of PLA products measured for 56 

a protein is a reflection of both the abundance of that protein and the availability of nearby Prox-57 

seq probes. By combining Prox-seq with scRNA-seq, these PLA products can be sequenced 58 

alongside complementary DNA (cDNA) libraries, providing information on gene expression, 59 

protein abundances, and protein complex formation from single cells4. 60 
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 61 

Figure 1. Working principle of Prox-seq and identification of proximity noise. (a) Schematic 62 
showing the main steps of Prox-seq. (b) Schematic showing the background in Prox-seq that is 63 
caused by proximity noise (random ligation of non-interacting protein molecules). (c) Heatmap 64 
showing the expected amount of proximity noise created from simulations of two protein 65 
molecules at varying expression levels. By modeling the mean amount of proximity noise with a 66 
binomial distribution (see Methods), we found that it was proportional to the product of the 67 
abundances of the two protein molecules. 68 

 69 

Prox-seq protein data contains a unique source of background noise, namely the ligation 70 

of two protein molecules that do not functionally interact but are nevertheless sufficiently close 71 

to each other by random chance. We call this effect “proximity noise” (Figure 1b). Proximity 72 

noise exists because the average distance between probes on the cell surface decreases with 73 

increasing protein abundance (see Methods). A previous study showed that proximity noise led 74 

to false positive detection of protein interactions for in situ PLA8. A theoretical model showed 75 

that the mean amount of proximity noise is proportional to the product of the expression levels of 76 

the two proteins that made up the PLA product (Figure 1c). In short, the presence of PLA 77 

products for a specific pair of proteins does not guarantee that the two proteins functionally 78 

interact and form stable complexes. 79 
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To account proximity noise, we previously proposed and used a statistical method, 80 

termed the iterative method, to differentiate protein complexes from random ligation in PLA 81 

product counts4. Initially, this method establishes an "expected value" for each PLA product, 82 

representing the number of PLA products that would exist if Prox-seq probes were randomly 83 

distributed across the cell surface. Subsequently, the method subtracts the expected background 84 

from the PLA product counts. If a PLA product's count exceeds its expected value, the difference 85 

between observed and expected PLA products is attributed to non-random protein complexes. 86 

This procedure is iteratively executed for every type of PLA product in each individual cell. 87 

Although this method successfully recovered positive controls of known protein complexes, 88 

assessing its performance on experimental data is challenging, as the generation of new Prox-seq 89 

datasets often lacks comprehensive knowledge of the entire set of protein complexes and their 90 

expression levels. 91 

In this study, we present a simulation model for single-cell proteomic data in proximity 92 

sequencing experiments and use it to computationally benchmark the performance of several 93 

new and existing protein complex prediction methods. After calibrating the model with 94 

experimental data, the simulation model allowed us to quantitatively analyze proximity noise and 95 

its effects on the measured PLA product counts. We compare the performance of three methods: 96 

the iterative method, a new linear regression-based method, and a new ensemble method that 97 

combines the two. We find that, while the iterative and linear regression-based methods perform 98 

well in several different scenarios, combining them into a single method yielded the most 99 

accurate and robust quantification of protein complexes. These results shed insight onto how the 100 

spatial organization of surface proteins translate into Prox-seq data and provides guidelines for 101 

use of Prox-seq and related dual-binding technologies for multi-omic analysis of single cells. 102 
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Results 103 

Overview of the simulation model 104 

Based on a physical model of how PLA products are formed in each single cell, we 105 

created a simulation model of PLA product count data. We reasoned that proximity alone would 106 

determine if a Prox-seq probe A and a Prox-seq probe B ligate and produce a PLA product. We 107 

constructed the simulation model in a way that allowed us to simulate probes that bind to non-108 

interacting protein molecules (proteins that are not part of a complex) separately from probes that 109 

bind to interacting molecules (proteins that are part of a complex). This procedure enabled us to 110 

independently tune the abundance of proteins and protein complexes in the simulation, and to 111 

observe how these properties affected Prox-seq data. 112 

First, we generated the non-interacting Prox-seq probes A as random points on a sphere 113 

(Figure 2a). These points indicate that the protein molecules exist as monomers; thus, any PLA 114 

products they form would be caused by proximity noise and as a result of being in a protein 115 

complex. Further, we assumed such protein monomers were distributed randomly on the cell 116 

surface. Then, we repeated the process to generate the non-interacting Prox-seq probe B signal. 117 

Second, we generated the interacting Prox-seq probes A and B by generating a sphere of random 118 

points. These points corresponded to detectable protein complexes. Because these two probes A 119 

and B both bound to the same protein complexes, the Prox-seq probe A points would necessarily 120 

be in proximity with their corresponding Prox-seq probe B points. Finally, any pairs of probe A 121 

and B with Euclidean distances less than the ligation distance were considered ligated and 122 

produced PLA products (see Methods). If a probe A was within the ligation distance with more 123 

than one probes B, one such probe B was chosen at random to ligate with said probe A. 124 
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 125 

 126 

Figure 2. Overview and calibration of simulated Prox-seq data. (a) Schematic for the 127 
simulation model of PLA products. The simulation was separately performed on a cell-by-cell 128 
basis. First, a number of non-interacting probes A and non-interacting probes B were added as 129 
random points on a sphere. Next, a number of protein complexes were added as random points on 130 
a sphere. These points corresponded to probes A and B that bound to interacting protein molecules. 131 
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Finally, probes A and B that had a Euclidean distance lower than the ligation distance were ligated, 132 
thus creating PLA products. (b) Histograms showing the UMI counts of three example PLA 133 
products in single Jurkat cells. (c) Histograms showing the UMI counts of three example simulated 134 
PLA products with NB variance. (d) Scatter plots of mean-variance relationship show how 135 
negative binomial variance captures overdispersion in PLA data, proximity noise data, protein 136 
complex data, and protein data. (e) The relationship between proximity noise (measured as UMI’s) 137 
and protein abundance (top) or ligation distance (bottom).  138 

 139 

We next compared the simulated Prox-seq data to experimental data. We analyzed T cells 140 

(Jurkat cell line) and B cells (Raji cell line) with a panel of Prox-seq probes that targeted both T 141 

cell and B cell markers from a previously reported study4. Simulated counts of PLA product and 142 

protein expression followed the Poisson distribution, whereas the experimental data exhibited 143 

overdispersion (Figure S1a, S2a). We found that adding variance in the form of a negative 144 

binomial distribution (NB) for non-interacting probes and protein complexes was sufficient to 145 

capture the overdispersion of the real data (NB variance, see Methods). With the added NB 146 

variance, the simulated data, like the experimental data, had a right-skewed distribution across 147 

different PLA product abundances (Figure 2b, c). Notably, the simulation model with added 148 

variance captured the positive correlation between observed PLA product count and non-149 

proximal probe count in real data (Figure S1b-g). The simulation model with no variance, 150 

however, showed a negative correlation between PLA product count and non-proximal probe 151 

count (Figure S1d and S1e). The NB variance model also produced non-proximal probe counts 152 

with similar distributions to those observed in experimental data (Figure S2).  153 

We generated replicated datasets by sampling from the fitted model for posterior 154 

predictive checks (PPCs)9. We then assessed how well these data samplings maintained the 155 

properties of the observed data with two metrics. First, we measured the similarity between the 156 

coefficient of variation per PLA product, proximity noise, protein complex and protein. This 157 
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comparison enables evaluation of how well the mean-variance relationship of real data is 158 

preserved (Figure 2d & Figure S3a). Second, we perform Mann-Whitney U-test statistic to 159 

measure the extent to which the replicated data and raw data come from the same distribution 160 

(Figure S3b). Finally, we characterized the amount of proximity noise in the most basic scenario 161 

when there were no protein complexes detectable by the Prox-seq probe panel. The simulation 162 

demonstrated that the amount of PLA product produced by random ligation scales quadratically 163 

with both protein abundance and ligation distance (Figure 2e). These results show that our model 164 

and simulations faithfully capture key aspects of real Prox-seq data in single cells and reiterates 165 

the importance of identifying and removing proximity noise, which can especially be large for 166 

highly expressed proteins. 167 

 168 

Iterative prediction of protein complex abundance 169 

An iterative method was used to previously identify the existence of stable protein complexes in 170 

Prox-seq measurements. This method proposed that when there were no protein complexes, the 171 

observed count of a PLA product i:j could be calculated from the abundance of the probe A 172 

targeting protein i, and the probe B targeting protein j (see Methods). This calculation resulted in 173 

an expected random count for PLA products that represents the PLA count caused by proximity 174 

noise. We reasoned that if the observed count of PLA product i:j was higher than the calculated 175 

expected random count, then i:j indicated a non-random protein interaction. To quantify the 176 

protein complexes on each single cell, we calculated the difference between the observed and 177 

expected random PLA product count (Figure 3a). This method was called the iterative method, 178 

because it involved solving a system of quadratic equations (describing all possible protein 179 

dimers) iteratively (see Methods)4. This method relied on the fact that Prox-seq can measure 180 
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protein abundance, similar to flow cytometry and CITE-seq10. The abundance of a protein was 181 

the amount of protein molecules that were present on the cell surface, and therefore included 182 

both molecules in monomeric and complex forms. In our previous study4, we proposed that the 183 

protein abundance could be estimated from Prox-seq data by summing the appearances of each 184 

protein across its associated PLA products (see Methods). Here, we find by using our simulated 185 

data that such an estimate is a good approximation of the true protein abundance, as they are 186 

strongly correlated (Figure S4). 187 

To further examine the assumptions underlying the iterative method, we now constructed 188 

the following simulation scenario: The simulation had three protein targets, called protein 1, 189 

protein 2 and protein 3. These proteins did not interact with themselves, nor with any other 190 

proteins. Furthermore, protein 3 had a lower non-interacting probe count (mean of 100 UMIs/cell 191 

compared to 1000 UMIs/cell for proteins 1 and 2, Table S1). Simulated data showed that our 192 

assumptions behind the iterative method were correct. When there were no interactions between 193 

the proteins, the observed PLA product counts were similar to the expected random count 194 

(Figure S5a). When we introduced the protein complex 1:1 to the simulation while keeping the 195 

other parameters the same, the observed counts of the PLA product 1:1 was higher than its 196 

expected random count (Figure S5b).  197 

One weakness of the iterative method is complexity of hyper-parameter tuning, which 198 

can result in sub-optimal convergence. They key parameter is the initialization setting, which are 199 

the initial estimates of protein complex abundances. By default, the algorithm assigns and initial 200 

value of 0 to all protein complexes. However, different initialization settings will influence 201 

iterative behaviors to convergence, as well as tolerance (Figure S6a). Unsensible initialization 202 
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tends to generate nonsensical predictive outputs. (Figure S6b). This led us to consider more 203 

robust methods for protein complex quantification.  204 

 205 

Prediction of protein complex abundance using linear regression 206 

To address the weakness of the iterative method we developed a new approach (the linear 207 

regression - LR method). This method uses an experimentally modified Prox-seq procedure that 208 

enables direct measurement of Prox-seq probes that were not ligated because they were not 209 

proximal to another Prox-seq probe (we refer to these as non-proximal probes)4. The proximity 210 

noise for a PLA product i:j should be proportional to the product of the non-proximal probe A 211 

targeting protein i, and the non-proximal probe B targeting protein j. We reasoned that if linear 212 

regression is used to model the observed PLA product count onto the estimated random ligation 213 

amount, true protein complexes would have positive intercepts (see Methods). The slope was 214 

then used to estimate the amount of random ligation, and the count of a protein complex was 215 

calculated by subtracting the estimated random ligation from the observed PLA product count 216 

(Figure 3b). Experimentally, we observed strong heteroscedasticity in the PLA product count 217 

when regressed on to the random ligation amount (Figure S7). Therefore, we performed linear 218 

regression using weighted least squares instead of ordinary least squares (see Methods). 219 

We created a new simulation to directly compare the iterative and LR methods. The simulation’s 220 

parameters were set to approximate the experimental data. More specifically, the simulation had 221 

three protein targets: protein 1, protein 2 and protein 3. Proteins 1 and 2 interacted both with 222 

themselves and each other (Figure 3c, Table S1). Protein 3 did not interact with itself, nor with 223 

protein 1 or protein 2. Furthermore, protein 3 had very low non-interacting protein count (mean 224 
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of 2 UMIs/cell compared to 20 and 15 for proteins 1 and 2, respectively). We found that the 225 

iterative method correctly identified protein complexes 1:1, 1:2, 2:1 and 2:2 (Figure 3c).  226 

To determine if we can statistically infer the enrichment of PLA products, we performed 227 

a one-sided Fisher's exact test on the counts of PLA products (Figure 3d, see Methods). This 228 

analysis correctly identified the four protein complexes present in the sample, independently 229 

confirming that the generated protein complexes occur at a higher frequency than random and 230 

can be statistically inferred (Figure 3d, see Methods). With regards to quantification of protein 231 

complexes on single cells, we observed that the iterative method consistently underestimated the 232 

true protein complex count (Figure 3c, e).  Conversely, the LR method not only correctly 233 

identified the four true protein complexes (complexes 1:1, 1:2, 2:1 and 2:2), but also produced 234 

much more accurate counts for them (Figure 3c, d, f). Overall, the results of the two methods 235 

were correlated on the single-cell level (Figure 3g). 236 

 237 

Ensemble method that combines both the LR and iterative methods for analysis of Prox-238 

seq data 239 

We next chose to explore a method that had the potential to outperform both the LR and iterative 240 

methods. As shown previously, the major weakness of the iterative method is its sensitivity to 241 

initialization conditions. We reasoned that the output from the LR method could be used as a 242 

sensible initialization for the iterative method (Figure 4a). Starting the iteration close to the 243 

correct result would make it less likely that the method would fall into a spurious local 244 

optimization. The performance of all three methods was compared in two simulations: one in 245 
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which a high percentage of proteins were in complex with other proteins (high signal) and one in 246 

which a low percentage of proteins were in complex (low signal) (Table S1).  247 

 248 

 249 

Figure 3. Comparison between the iterative and linear regression (LR) methods for protein 250 
complex prediction in simulated data. (a, b) Schematics showing the working principle of (a) 251 
the iterative method and (b) the LR method. In the iterative method, the protein complex count is 252 
the difference between the observed and expected PLA product count. In the LR method, the 253 
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protein complex count is the difference between the observed PLA product count and its expected 254 
amount of random ligation, which is calculated from the non-proximal probe count. In (a), the red 255 
line indicates y = x. In (b), the orange line indicates the linear regression fit. (c) Heatmap showing 256 
the mean complex count of simulated data, and of the iterative and LR methods’ prediction results. 257 
(d) Heatmap showing the fraction of cells expressing a protein complex, as predicted by the 258 
iterative method, the LR method, and Fisher’s exact test. In (c, d), the true count represents the 259 
ground truth of protein complex count in the simulation. (e, f) Scatter plots showing the simulated 260 
and predicted count of protein complex 1:1 using € the iterative and (f) the LR method. (g) Scatter 261 
plot comparing the predicted count of protein complex 1:1 from the iterative and the LR methods. 262 
In (e-g), the red lines indicate y = x, and each dot represents a single cell. 263 

 264 

The iterative method performed well when signal was high, but generated false positives 265 

when signal was low (Figure 4b-c). The LR method performed better in the high noise 266 

simulation but suffered from false positives when noise was low (Figure 4c). This is not 267 

surprising because LR method depends on performing regression with product of non-proximal 268 

probes as the explanatory variable and if there are few non-proximal probes across all single 269 

cells (or low noise in our simulation), LR method will become unstable. Both methods 270 

consistently underestimated the abundance of protein complexes. For the iterative method, this is 271 

partly because expected PLA count we assumed is the maximal proximity noise it might have. 272 

The slope we use to quantify protein complexes from LR method tends to be larger than the true 273 

value because counts of non-proximal probes we can measure are inevitably lower than real 274 

counts both in experiment and simulation, which would give us a smaller positive intercept and 275 

protein complex count. In contrast, the ensemble method was able to maintain strong 276 

performance in both scenarios. It was less likely to produce a false positive, assigned fewer reads 277 

to false positives than other methods, and was closer to the true count for most of the protein 278 

complexes (Figure 4b-c). Finally, for a given PLA product, the ensemble method was more 279 

accurate in quantifying the abundance of true-positive complexes in single cells (Figure 4d).  280 
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A quantitative scoring strategy to comprehensively evaluate prediction methods 281 

To evaluate the predictive performance of these methods more comprehensively, we further 282 

propose a quantitative scoring strategy to assign a prediction score for every prediction (Figure 283 

S8a). We simulate different biological scenarios with our model and score the overall prediction 284 

performance of each method by considering sum of absolute deviation between mean true counts 285 

and predicted counts (∑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), sum of Pearson correlation coefficient (∑𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀) 286 

across singles cells (Figure S8b), and sum of ratios of false positive prediction (∑𝐹𝐹𝑃𝑃𝑃𝑃𝑀𝑀𝐹𝐹𝑀𝑀) 287 

across single cells (Figure S8c) (see Methods). Comparing the methods across all scenarios 288 

showed that the ensemble method had the highest average prediction score and the lowest 289 

variance (Figure S8d & Table S2). The ensemble approach effectively improves iterative method 290 

and LR method’s generalization to different biological scenarios. 291 

Comparison of all three analytical methods to real data and performance evaluations 292 

Next, we evaluated the concordance between all three methods on experimental data from single 293 

Jurkat and Raji cells. Overall, we found that each method largely agreed on which PLA products 294 

were predicted to be protein complexes (Figures 5a-f). While the bulk measurements of protein 295 

complexes showed good agreement between methods, the three methods had varying levels of 296 

correlation for single cells (Figure 5g, h). In addition, we observed all three method, along with 297 

the Fisher’s Exact test, largely identified the same protein complexes (Figure S9).  298 

All methods predicted protein complexes CD3:CD3 and CD28:CD28 in Jurkat cells, both 299 

of which are known protein complexes11,12. All three methods also predicted protein complex 300 

ICAM1:ICAM1 in Raji cells, which was shown to dimerize on the cell surface13. We also 301 

evaluated our methods against a simulation designed to more closely represent the experimental 302 
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data. Protein expression levels were estimated from the experimental data and used to create 303 

simulation models for Jurkat and Raji cells (Table S1). Then, protein complexes corresponding 304 

to CD3:CD3, CD28:CD28, and CD3:CD28 were added to Jurkats, whereas HLADA:HLADR 305 

and PDL1:PDL1 were added to Rajis. Once again, we observe largely similar performance for all 306 

methods (Figure S10). 307 
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 308 

Figure 4. The ensemble method for improved analysis of Prox-seq data. We combine the 309 
iterative and LR methods for better prediction of protein complexes. (a) Schematic showing how 310 
all three methods arrive at protein complex estimation. The iterative method combines raw data 311 
and an initialization with an all-zeroes matrix to quantify protein complexes. The LR method uses 312 
raw data and free-oligo data to construct a linear regression model that quantifies protein 313 
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complexes. The ensemble method begins with applying the LR workflow and uses the output of it 314 
to initialize the iterative method. (b) Comparison of all three methods in a regime of high signal 315 
and low noise, compared to the true counts. (c) Comparison of all three methods in a regime of 316 
low signal and high noise, compared to the true counts. (d) The Pearson’s correlation between true 317 
counts and the outputs for each method across single cells. Each example shows complex 3:3 from 318 
the low signal/high noise regime. 319 

 320 

 321 

 322 

Figure 5. Comparison between the iterative and LR methods on experimental data. (a-c) 323 
Heatmaps showing the average of protein complex count, predicted by (a) the iterative method, 324 
(b) the LR method, and (c) the ensemble method in Jurkat cells. (d-f) Heatmaps showing the 325 
average of protein complex count, predicted by (a) the iterative method, (b) the LR method, and 326 
(c) the ensemble method in Raji cells. (g) Comparison of methods for predicting counts of protein 327 
complexes of CD28:CD28 and in Jurkat cells. (h) Comparison of methods for predicting counts of 328 
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protein complexes of ICAM1:ICAM1 and in Raji cells. In (g, h), the red lines indicate y = x, and 329 
r indicates the Pearson’s correlation coefficient. 330 

 331 

Discussion 332 

Here, we presented a comprehensive computational framework for simulating Prox-seq data, and 333 

for predicting protein complex count from Prox-seq data. We studied how the quantification of 334 

protein complexes was affected by proximity noise, which is caused by proteins that are not 335 

functionally interacting but are sufficiently close to each other by random chance to produce 336 

valid ligation products. Our simulation model showed that the amount of proximity noise is 337 

strongly depended on the protein abundance. Similar results have been observed in commercial 338 

in situ PLA8. 339 

We showed that with respect to protein complex prediction, the iterative method, LR 340 

method, and ensemble method largely agree on real experimental data. Therefore, we propose 341 

that each of these methods could be used for protein complex detection and quantification, and 342 

any protein complexes that were predicted by these methods were highly likely to be true protein 343 

complexes. However, in head-to-head comparisons using simulated data, the ensemble method 344 

performed well over a larger range of data types than the other methods.  345 

Our simulation model had some limitations. First, it did not consider interactions higher 346 

than dimers, diffusion of the protein molecules, their physical sizes, and the technical variability 347 

of the Prox-seq assay. Second, the simulation model requires the user to independently select the 348 

abundance of a protein complex and its constituents' non-interacting counterpart. In real cells, 349 

these abundances are likely highly correlated. Finally, it assumed that the protein complexes and 350 

the non-interacting proteins were uniformly distributed on the cell surface. Despite these 351 
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limitations, we showed that the overall structure of simulated Prox-seq data is very similar to real 352 

Prox-seq data.  353 

Currently, application of each method requires a relatively homogeneous population of 354 

single cells. In practice, this requires that simultaneously acquired mRNA data is first used to 355 

cluster cell types, and then either method can be applied to individual clusters. This requirement 356 

is because each method relied on a statistic of the whole population (the difference between 357 

observed and expected random PLA product count for the iterative method, and the linear 358 

regression's intercept and slope coefficient for the LR method) and having different complex 359 

expression levels would lower the power the methods. Further study is required to extend these 360 

methods to a population of heterogeneous cell types without the use of mRNA data. 361 

We envision that the Ensemble method will be particularly useful when Prox-seq is 362 

extended to intracellular proteins. Indeed, since non-specific antibody binding is much more 363 

severe in intracellular staining than extracellular staining, random ligation is an even more 364 

important source of noise given common macromolecular crowding effect within cells. The 365 

simulation model can also be further extended to model Prox-seq data of intracellular proteins. In 366 

short, we have validated the protein complex prediction algorithm that was proposed previously4, 367 

proposed two additional independent methods for protein complex prediction, and introduced a 368 

model for simulating Prox-seq data. 369 

 370 

Methods 371 

Theoretical calculation of proximity noise 372 
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Suppose there are Ai probes A and Bj probes B on the cell surface. Assume that the probes are 373 

random points on a spherical surface, and proteins i and j do not interact. Because the ligation 374 

distance is significantly shorter than the cell’s radius, we assume that a probe A and a probe B 375 

can be ligated if and only if the Euclidean distance between them, L, is less than or equal to the 376 

ligation distance, dligation. The Euclidean distance L between any pair of random points has the 377 

following probability distribution14: 378 

𝑃𝑃(𝐿𝐿) =
𝐿𝐿

2𝑅𝑅2
 379 

where R is the cell radius. 380 

Then, the probability of ligation between two random points on the cell surface is: 381 

𝑃𝑃�𝐿𝐿 ≤ 𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� =
𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2

4𝑅𝑅2
 382 

Assume that each probe could be ligated as many times as possible, the mean counts of 383 

ligated PLA product i:j, Xi,j, follow a binomial distribution: 384 

𝑋𝑋𝑑𝑑,𝑗𝑗~𝐵𝐵𝐵𝐵𝑀𝑀𝑃𝑃𝐵𝐵𝐵𝐵𝑀𝑀𝐵𝐵 �𝑀𝑀 = 𝐴𝐴𝑑𝑑 × 𝐵𝐵𝑗𝑗,𝑝𝑝 = 𝑃𝑃�𝐿𝐿 ≤ 𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�� 385 

The expected count of PLA product that is created from random ligation of non-386 

interacting probes is: 387 

𝐸𝐸�𝑋𝑋𝑑𝑑,𝑗𝑗� =
𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2

4𝑅𝑅2
𝐴𝐴𝑑𝑑𝐵𝐵𝑗𝑗 388 

Note that this approximation assumes that each probe can be ligated many times, while 389 

the simulation model assumes that each probe can only be ligated at most once. 390 

Simulation model 391 
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Assume that each protein molecule and the Prox-seq probe that binds to it are point particles. Let 392 

there be n protein targets. Let A1, A2,…, An be the simulation parameters that represent the count 393 

of probe A that targets proteins 1, 2,…, n. Let B1, B2,…, Bn be the simulation parameters that 394 

represent the count of probe B that targets proteins 1, 2,…, n. Let c1,1, c1,2,…, c1,n, c2,1, c2,2,…, 395 

cn,n be the simulation parameters that represent the counts of protein complexes 1:1, 1:2,…, 1:n, 396 

2:1, 2:2,…, n:n. 397 

The simulation is performed separately on each single cell. For the single cell t, we first 398 

generate 𝐴𝐴𝑑𝑑
(𝑑𝑑) number of random points on a sphere surface, which correspond to the number of 399 

detected probe A that targets protein i on cell t. The coordinates of each point are15: 400 

𝑥𝑥 = 𝑅𝑅�1 − 𝑢𝑢2 cos 𝜃𝜃 401 

𝑦𝑦 = 𝑅𝑅�1 − 𝑢𝑢2 sin𝜃𝜃 402 

𝑧𝑧 = 𝑅𝑅𝑢𝑢 403 

where R is the radius of the sphere (taken to be 5 µm, or 5000 units, in our study), u is uniformly 404 

distributed over [-1,1), and θ is uniformly distributed over [0,2π). 405 

Without added variance, 𝐴𝐴𝑑𝑑
(𝑑𝑑) = 𝐴𝐴𝑑𝑑. With added negative binomial variance: 406 

𝐴𝐴𝑑𝑑
(𝑑𝑑)~𝑁𝑁𝑀𝑀𝑁𝑁𝑀𝑀𝐹𝐹𝐵𝐵𝑁𝑁𝑀𝑀𝐵𝐵𝐵𝐵𝑀𝑀𝑃𝑃𝐵𝐵𝐵𝐵𝑀𝑀𝐵𝐵(𝑀𝑀𝑁𝑁𝑁𝑁,𝑝𝑝𝑁𝑁𝑁𝑁) 407 

where nNB =1.5 in our study, and 𝑝𝑝𝑁𝑁𝑁𝑁 = �1 + 𝐴𝐴𝑖𝑖
𝑑𝑑𝑁𝑁𝑁𝑁

�
−1

. The negative binomial distribution 408 

formulated this way provides the probability of getting 𝐴𝐴𝑑𝑑
(𝑑𝑑) failures, given nNB successes and pNB 409 

is the probability of success. nNB is used to control the variance of the probe count, and pNB is 410 

calculated such that the mean of 𝐴𝐴𝑑𝑑
(𝑑𝑑) is equal to Ai. 411 
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Second, we randomly generate 𝐵𝐵𝑑𝑑
(𝑑𝑑) number of points on a surface of a sphere, which 412 

correspond to the number of detected probe B that targets protein i on cell t. The coordinates of 413 

each point are generated identically to above. 414 

Without added variance, 𝐵𝐵𝑑𝑑
(𝑑𝑑) = 𝐵𝐵𝑑𝑑. With added variance: 415 

𝐵𝐵𝑑𝑑
(𝑑𝑑) =

𝐵𝐵𝑑𝑑
𝐴𝐴𝑑𝑑

× 𝐴𝐴𝑑𝑑
(𝑑𝑑) 416 

This is to ensure that the counts of detected probe A and probe B that target the same protein are 417 

proportional to each other. 418 

Third, we randomly generate 𝑐𝑐𝑑𝑑,𝑗𝑗
(𝑑𝑑) number of points on a surface of a sphere, which 419 

correspond to the count of protein complex i:j on cell t. Then, these 𝑐𝑐𝑑𝑑,𝑗𝑗
(𝑑𝑑) points are added to the 420 

previously generated probe A points targeting protein i 𝐴𝐴𝑑𝑑
(𝑑𝑑), and also to the previously generated 421 

probe B targeting protein j 𝐵𝐵𝑗𝑗
(𝑑𝑑). 422 

Without added variance, 𝑐𝑐𝑑𝑑,𝑗𝑗
(𝑑𝑑) = 𝑐𝑐𝑑𝑑,𝑗𝑗. With added variance: 423 

𝑐𝑐𝑑𝑑,𝑗𝑗
(𝑑𝑑)~𝑁𝑁𝑀𝑀𝑁𝑁𝑀𝑀𝐹𝐹𝐵𝐵𝑁𝑁𝑀𝑀𝐵𝐵𝐵𝐵𝑀𝑀𝑃𝑃𝐵𝐵𝐵𝐵𝑀𝑀𝐵𝐵(𝑀𝑀𝑁𝑁𝑁𝑁,𝑝𝑝𝑁𝑁𝑁𝑁) 424 

where nNB =1.5 in our study, and 𝑝𝑝𝑁𝑁𝑁𝑁 = �1 + 𝑐𝑐𝑖𝑖,𝑗𝑗
𝑑𝑑𝑁𝑁𝑁𝑁

�
−1

. 425 

Fourth, we calculated the pairwise Euclidean distances between all generated probe A 426 

points and all generated probe B points. Finally, we randomly go through the pairs of points that 427 

are within a ligation distance threshold (chosen to be 50 nm, or 50 units, in our study), and add 428 

the corresponding PLA product to the simulated count matrix. Any probe A and probe B points 429 
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that are chosen are excluded from future PLA products. In other words, each probe A and each 430 

probe B can only be ligated at most once. 431 

The number of probe A and probe B points that are not ligated are returned as the 432 

simulated non-proximal probe count that is measured by the free oligo modification. 433 

The simulation is repeated 100 times to simulate PLA product counts of 100 single cells. 434 

The parameters for all simulations are listed in Table S1. All simulations include negative 435 

binomial variance, unless stated otherwise. 436 

Calculation of protein count and expected PLA product count 437 

The count of a protein i in a single cell is equal to the total number of detected PLA products that 438 

are related to the protein i: 439 

𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝑀𝑀𝐵𝐵𝑀𝑀 𝐵𝐵 = �𝑋𝑋𝑑𝑑,𝑙𝑙

𝑑𝑑

𝑙𝑙=1

+ �𝑋𝑋𝑘𝑘,𝑑𝑑

𝑑𝑑

𝑘𝑘=1

 440 

where Xi,l and Xk,i indicate the observed (i.e., measured) counts of PLA products i:l and k:i, 441 

respectively. The PLA product i:i is counted twice towards the protein count to account for the 442 

fact that two molecules are present in a homodimer. 443 

The expected count of a PLA product i:j, Ei,j, is: 444 

𝐸𝐸𝑑𝑑,𝑗𝑗 =
∑ 𝑋𝑋𝑑𝑑,𝑙𝑙𝑑𝑑
𝑙𝑙=1 × ∑ 𝑋𝑋𝑘𝑘,𝑗𝑗

𝑑𝑑
𝑘𝑘=1

∑ ∑ 𝑋𝑋𝑘𝑘,𝑙𝑙
𝑑𝑑
𝑙𝑙=1

𝑑𝑑
𝑘𝑘=1

 445 

Protein complex prediction: iterative method 446 

The count of protein complex i:j is calculated iteratively using the following equation: 447 
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𝑌𝑌𝑑𝑑,𝑗𝑗
(𝑚𝑚+1) = 𝑋𝑋𝑑𝑑,𝑗𝑗 −

�∑ 𝑋𝑋𝑑𝑑,𝑙𝑙𝑑𝑑
𝑙𝑙=1 − ∑ 𝑌𝑌𝑑𝑑,𝑙𝑙

(𝑚𝑚)𝑑𝑑
𝑙𝑙=1 � × �∑ 𝑋𝑋𝑘𝑘,𝑗𝑗

𝑑𝑑
𝑘𝑘=1 − ∑ 𝑌𝑌𝑘𝑘,𝑗𝑗

(𝑚𝑚)𝑑𝑑
𝑘𝑘=1 �

∑ ∑ 𝑋𝑋𝑘𝑘,𝑙𝑙
𝑑𝑑
𝑙𝑙=1

𝑑𝑑
𝑘𝑘=1 − ∑ ∑ 𝑌𝑌𝑘𝑘,𝑙𝑙

(𝑚𝑚)𝑑𝑑
𝑙𝑙=1

𝑑𝑑
𝑘𝑘=1

 448 

where 𝑌𝑌𝑑𝑑,𝑗𝑗
(𝑚𝑚) is the predicted count of protein complex i:j at the mth iteration. The initial values for 449 

all protein complexes are 0. 450 

The second term of the right hand side represents the count of PLA product i:j that is 451 

caused by random ligation. 452 

After each iteration, a one-sided t-test is performed on the values of 𝑌𝑌𝑑𝑑,𝑗𝑗
(𝑚𝑚+1) across all 453 

single cells. The alternative hypothesis is that the mean of 𝑌𝑌𝑑𝑑,𝑗𝑗
(𝑚𝑚+1) is greater than 1. Next, any 454 

𝑌𝑌𝑑𝑑,𝑗𝑗
(𝑚𝑚+1) with Benjamini-Hochberg-corrected P-values above 0.05 are set to 0. In other words, any 455 

such PLA products were determined to not represent true protein interactions. 456 

There is also a symmetry condition, such that if i:j is a protein complex, then j:i should 457 

also be a protein complex, even if 𝑌𝑌𝑗𝑗,𝑑𝑑
(𝑚𝑚+1) fails the t-test. This is done by setting 𝑌𝑌𝑗𝑗,𝑑𝑑

(𝑚𝑚+1) as a 458 

fraction of 𝑌𝑌𝑑𝑑,𝑗𝑗𝑗𝑗
(𝑚𝑚+1): 459 

𝑌𝑌𝑗𝑗,𝑑𝑑
(𝑚𝑚+1) = 𝑃𝑃𝑦𝑦𝐵𝐵_𝑤𝑤𝑀𝑀𝐵𝐵𝑁𝑁ℎ𝐹𝐹 × 𝑌𝑌𝑑𝑑,𝑗𝑗

(𝑚𝑚+1) 460 

where sym_weight is arbitrarily chosen to be 1 in our study. 461 

Protein complex prediction: linear regression (LR) method 462 

For each PLA product i:j, its observed count is regressed onto the product of its corresponding 463 

non-proximal probe A count and non-proximal probe B count, using weighted least squares: 464 

𝑋𝑋𝑑𝑑,𝑗𝑗~𝛽𝛽0 + 𝛽𝛽1𝐴𝐴𝑑𝑑′𝐵𝐵𝑗𝑗′ 465 
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where 𝐴𝐴𝑑𝑑′  and 𝐵𝐵𝑗𝑗′ are the count of non-proximal probe A targeting protein i, and non-proximal 466 

probe B targeting protein j, respectively. The weight for a sample (ie, a single cell) p is: 467 

𝑤𝑤𝑝𝑝 =
1

𝐴𝐴𝑑𝑑′𝐵𝐵𝑗𝑗′
 468 

For simulated data, we also scale the interaction term by 106 whenever necessary, such that it is 469 

close to the orders of magnitude of Xi,j. 𝐴𝐴𝑑𝑑′  and 𝐵𝐵𝑗𝑗′ are obtained from PLA products that contain 470 

the added free oligos. For example, the count of non-proximal CD3 probe A is equal to the count 471 

of PLA product CD3:free_oligo_B, and the count of non-proximal CD28 probe B is equal to the 472 

count of PLA product free_oligo_A:CD28. 473 

Next, we performed a one-sided t-test on the intercept coefficient, and the alternative 474 

hypothesis is that 𝛽𝛽0 > 𝛽𝛽𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐. For simulated data, 𝛽𝛽𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐 = 1. For experimental data 475 

𝛽𝛽𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐 = 10. All PLA products with Benjamini-Hochberg-corrected P-values below 0.05 are 476 

considered to be true protein complexes. The protein complex count, Yi,j, is calculated as the 477 

difference between the observed PLA product count and the interaction term: 478 

𝑌𝑌𝑑𝑑,𝑗𝑗 = 𝑋𝑋𝑑𝑑,𝑗𝑗 − 𝛽𝛽1𝐴𝐴𝑑𝑑′𝐵𝐵𝑗𝑗′ 479 

The LR method is related to the binomial approximation of the random ligation signal 480 

above. If the counts of non-proximal probes are perfect proxies for the count of non-interacting 481 

probes, then we have the following relationship: 482 

𝛽𝛽1 =
𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2

4𝑅𝑅2
 483 

Protein complex prediction: Ensemble method 484 
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The ensemble method relies on solving same quadratic equations as iterative method to 485 

approximate counts of protein complex. The only difference is that it takes protein complex 486 

matrix calculated from LR method as initial values. There is an argument called df_guess 487 

embedded in predictive function which is set to be all zeros by default. Note that LR method 488 

should be applied in advance in order to perform ensemble method. 489 

Protein complex prediction: Fisher’s exact test 490 

For each PLA product i:j, we construct a 2x2 table: 491 

 Probe B = j Probe B ≠ j 

Probe A = i 𝑋𝑋𝑑𝑑,𝑗𝑗 �𝑋𝑋𝑑𝑑,𝑙𝑙

𝑑𝑑

𝑙𝑙=1
𝑙𝑙≠𝑗𝑗

 

Probe A ≠ i �𝑋𝑋𝑘𝑘,𝑗𝑗

𝑑𝑑

𝑘𝑘=1
𝑘𝑘≠𝑑𝑑

 ��𝑋𝑋𝑘𝑘,𝑙𝑙

𝑑𝑑

𝑙𝑙=1
𝑙𝑙≠𝑗𝑗

𝑑𝑑

𝑘𝑘=1
𝑘𝑘≠𝑑𝑑

 

We perform a one-sided Fisher’s exact test using the table. The alternative hypothesis is 492 

that Xi,j is higher than the expected value. We perform a Benjamini-Hochberg correction for each 493 

cell on the P-values of all PLA products calculated for that cell. The cell is considered to be 494 

displaying the protein complex if the corrected P-value is below 0.05. 495 

Prediction score mechanism  496 

𝑆𝑆𝑐𝑐𝑃𝑃𝑃𝑃𝑀𝑀 =  𝑤𝑤1 ∗�𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀  − 𝑤𝑤2 ∗�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −𝑤𝑤3 ∗�𝐹𝐹𝑃𝑃𝑃𝑃𝑀𝑀𝐹𝐹𝑀𝑀 497 

where 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 are chosen to be 0.5, 0.4, 0.1 in our study. ∑𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀 equals to the sum of 498 

Pearson correlation coefficients for every real protein complex between true complex counts and 499 
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predicted complex counts across all singles cells. ∑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 equals to the sum of absolute 500 

difference between mean true counts and predicted counts for every PLA product: 501 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑𝑝𝑝𝑐𝑐𝑑𝑑�

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑𝑝𝑝𝑐𝑐𝑑𝑑
 502 

∑𝐹𝐹𝑃𝑃𝑃𝑃𝑀𝑀𝐹𝐹𝑀𝑀 equals to the sum of ratios of false positive prediction across single cells for every 503 

non-existing PLA product.  504 

For quantification accuracy evaluation where there are true protein complex counts, we consider 505 

parameters ∑𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀 and ∑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. Pearson correlation coefficient takes single cells 506 

into consideration while means counts can give us information about bulk abundance of different 507 

PLA products. We found that poor prediction of PLA counts in single cells might still contribute 508 

to seemingly good mean counts estimation, which shed lights on us that Pearson correlation 509 

should be a more important and robust parameter than mean counts. For ∑𝐹𝐹𝑃𝑃𝑃𝑃𝑀𝑀𝐹𝐹𝑀𝑀 evaluation 510 

where there is no true complex, we use fraction of complex-positive cells to represent how many 511 

ratios of single cells are wrongly assigned at least a complex count. According to our multiple 512 

tests, each method tends to assign only few false positive reads, mostly only one in some single 513 

cells to PLA products. So that we assume false positive rate a minor metric to be considered in 514 

our scoring strategy. In conclusion, we arbitrarily choose effector weight for each parameter 515 

given relative importance discussed above.  516 

Software implementation 517 

All code is implemented in Python3/Anaconda3 (v4.10.3). The code is deposited at 518 

https://github.com/tay-lab/Prox-seq_computation. 519 

Data availability 520 
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The raw sequencing data and processed PLA product count data are deposited in NCBI's Gene 521 

Expression Omnibus (accession number GSE196130). 522 
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