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SUMMARY

Cells of the immune system operate in dynamic microenvironments where the timing, concentration, and or-
der of signaling molecules constantly change. Despite this complexity, immune cells manage to communi-
cate accurately and control inflammation and infection. It is unclear how these dynamic signals are encoded
and decoded and if individual cells retain the memory of past exposure to inflammatory molecules. Here, we
use live-cell analysis, ATAC sequencing, and an in vivomodel of sepsis to show that sequential inflammatory
signals induce memory in individual macrophages through reprogramming the nuclear factor kB (NF-kB)
network and the chromatin accessibility landscape. We use transcriptomic profiling and deep learning to
show that transcription factor and chromatin dynamics coordinate fine-tuned macrophage responses to
new inflammatory signals. This work demonstrates howmacrophages retain the memory of previous signals
despite single-cell variability and elucidates the mechanisms of signal-induced memory in dynamic inflam-
matory conditions like sepsis.

INTRODUCTION

Cells are exposed to combinations of time-varying signaling in-

puts in their native microenvironments. These signals coordinate

fundamental processes in immunity, development, maintenance

of homeostasis, and tissue repair.1,2 The combination, order,

and duration of signaling inputs provide cells the information

about appropriate transcriptional responses.3,4 For example,

acute inflammation triggered by infection or injury arises from

the coordinated processing of signals from pathogens, pro-in-

flammatory cytokines, and anti-inflammatory molecules, span-

ning durations from hours to days.3 The correct sequence of

ligand exposure and receptor stimulation results in an appropri-

ately transient pro-inflammatory response that clears the infec-

tion but limits damage to cells or tissues, followed by secretion

of anti-inflammatory and tissue repair molecules. However,

incorrect stimulation sequence can produce chronic infection

or excessive tissue damage and autoimmunity.5–7 Interestingly,

a large number of extracellular signals converge on a limited

number of information-processing pathways and share intracel-

lular components. How cells utilize such limited information-pro-

cessing machinery to integrate diverse and dynamically evolving

signals remains an open question.

Studies of innate immune cells under dynamic time-varying

signals proposed the existence of individual cell memory, i.e.,

increased or reduced signal sensitivity (priming or tolerance)

due to past exposure to other signals. Cellular memory of prior

stimuli may enable fine-tuned cellular decision-making by selec-

tively amplifying and muting signals based on prior context.

Thus, information processing in a complex environment can be

reduced to a few key signaling features that are simpler to pro-

cess by limited cellular resources. It has been suggested that

retention of memory of previous signals can contextualize re-

sponses to subsequent signals during acute inflammation.8

Macrophages are first-responder cells that sense pathogens

and coordinate local and systemic immune responses.9 Thus,

macrophage memory of prior inflammatory signals may play a

key role in immunity, and dysfunction in macrophage memory

can lead to conditions like sepsis and chronic inflammation.8 Un-

derstanding macrophage memory is crucial for fundamental

studies and modeling of signaling and inflammation and may

enable effective therapeutic approaches in infection, autoimmu-

nity, and cancer.

Memory can shape cell responses in contradictory ways.

Exposure to high concentrations of inflammatory stimuli like bac-

terial lipopolysaccharides (LPSs) induces tolerance and mutes
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subsequent response to other inflammatory stimuli.10–12 Expo-

sure to other classes of inflammatory stimuli or even lower con-

centrations of the same stimulus, however, can induce priming

and amplify subsequent response to inflammatory stimuli.13–18

These contradictory responses necessitate systematic profiling

of memory encoding and identification of rules underlying

cellular decisions toward priming or tolerance.19

Inflammatory stimuli produce global changes in chromatin

accessibility and enhancer landscapes, which may contribute to

cellular memory and eventually both tolerance and priming.8,12,17

These stimuli also work at the level of signal transduction,

inducing transcription of positive and negative feedback proteins

in the form of signaling intermediaries, receptors, and cyto-

kines.15,20–23 Previous studies have not considered themulti-level

regulatory nature of complex processes likememory when study-

ing transcriptional control. In particular, cellular memory has been

primarily associated with chromatin-mediated processes,24 with

less emphasis on alterations in signaling networks.

Systematic screening of dynamic signals in single cells is tech-

nically challenging and requires high throughput, time-resolved

stimulation, and continuous readouts. Automated microfluidic

live-cell imaging resolves these concerns by enhancing cell cul-

ture and stimulation and providing real-time readouts of cellular

states. Microfluidic live-cell imaging of nuclear factor kB (NF-kB)

transcription factor (TF) dynamics, in particular, has revealed

key features of inflammatory signal processing over time. The

NF-kB pathway is a central regulator of inflammatory signaling,25

and temporal dynamics of NF-kB activation encode information

about the identity, dose, and duration of a particular stim-

ulus.26–28 NF-kB dynamics in single cells are reshaped by prior

stimuli andmay retain thememory for prior signals.29,30 Recently

developed transgenic mouse models have shown how NF-kB

dynamics play a role in primary immune cells and disease

states.28,31–33 Thus, tracking NF-kB activation dynamics in sin-

gle primary immune cells is uniquely suited to characterizing

the global changes in signal transduction due to memory in in-

flammatory signaling networks.

In this work, we profile the effects of inflammatory memory on

activation dynamics of the NF-kBpro-inflammatory TFs, remodel-

ing of chromatin accessibility, and regulation of transcriptional

state. We show that the transcriptional state of memory-condi-

tioned macrophages can be explained and predicted by changes

both in cytosolic signaling dynamics and in nuclear chromatin

accessibility.Weuse a systematic screen of 80 pairwise ligand se-

quences to discover that memory in primary macrophages is en-

coded through altering the dynamics of inflammatory signaling

through NF-kB. Combining these multimodal approaches allows

us to generate a deep-learning model that predicts gene expres-

sion under different memory conditions. Altogether, these results

comprehensively profile and reveal how cellular decision-making

can be tuned by multi-level encoding of stimulus history.

RESULTS

Sequential stimulation with inflammatory ligands
results in distinct NF-kB activation dynamics in single
macrophages
Leveraging the strengths of microfluidics and live-cell imaging,

we systematically profiled innate immune memory in primary

bone-marrow-derived macrophages generated from transgenic

mice expressing a fluorescently taggedmember of the canonical

NF-kB family of TFs, RelA (RelAv/v) (Figure S1A).28,29 While prior

studies of signalingmemory and sequential ligand stimulus exist,

our approach improves the number of testable sequences, en-

ables single-cell resolution, and allows exploration of memory

in the context of dynamic TF regulation (Figure 1A).

We began our systematic screening of signaling memory by

strategic selection of six inflammatory ligands, including pro-in-

flammatory cytokines (tumor necrosis factor alpha [TNF-a] and

interleukin [IL]-1b), bacterial molecules and analogs (CpG,

PAM2CSK4 [PAM], and LPS), and viral analogs (polyI:C). Each

ligand acts on one of several intracellular pathways that ulti-

mately all converge on activation of NF-kB (Figure S1B).34 We

stimulated cells with one of these ligands (ligand A) at different

doses and durations, followed by TNF-a or LPS stimulation

(ligand B), producing a total of 80 dynamic inputs testing individ-

ual memory conditions (Figure S1C). TNF-a has a largely inde-

pendent signaling pathway, and LPS shares many pathway in-

termediaries with each ligand except TNF-a, which allowed us

to test the importance of shared pathway intermediaries on

memory. We tracked nuclear translocation of RelA in single cells

during stimulation with ligand A and ligand B, which identified

clear differences in ligand B response depending on prior stim-

ulus (Figures 1B and 1C). Distinct single-cell NF-kB activation

dynamics and memory effects were visible among the 80 condi-

tions (Figures 1E, 1F, and S2; Videos S1, S2, and S3).

For example, we considered the potential memory effect of

CpG or polyI:C stimulation. CpG and polyI:C activate distinct

intracellular pathways involving MyD88 and TRIF, respectively,

before ultimately triggering NF-kB translocation (Figure 1D).34

For CpG, we observed a clear attenuation of cellular response

to both TNF-a and LPS, though the response to CpG increased

(Figure 1E), while increased polyI:C response potentiated re-

sponses by increasing activation amplitude and durations (Fig-

ure 1F). Thus, we concluded that NF-kB dynamics encoded

ligand-specific memory effects, including both attenuation, or

tolerance, and potentiation, or priming.

Ligand-specific memory encodes dose- and duration-
dependent tolerance and priming
Altered activation dynamics due to memory suggest that prior

stimulus remodels the NF-kB signal transduction network. To

quantify and compare the effects of remodeling by different stim-

uli, we normalized NF-kB response area-under-the-curve (AUC)

from ‘‘memory-conditioned’’ cells to the naive AUC for the same

stimulus (Figure S1D). AUC is ameasure of total NF-kB activity in

a given cell. Stimuli that induced a response AUC below naive

were classified as tolerizing, and those that induced a response

AUC above naive were considered priming. Using this quantifi-

cation, we confirmed our observation that the CpG stimulus to-

lerized subsequent TNF-a and LPS signaling and that polyI:C

stimulus primed subsequent signaling. We did not observe pre-

viously reported shifts from priming to tolerance or vice versa in

our dose range, possibly due to the lack of ‘‘sub-stimulatory’’

doses in our screen (Figures 2A–2D). However, stimulation with

increased concentrations of tolerance-inducing ligands resulted

in greater attenuation of subsequent response, showing that

tolerance is dose dependent. polyI:C was the only ligand to
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Figure 1. Microfluidic screening of memory encoded in NF-kB dynamics in single live cells

(A) Automated microfluidics enables high-throughput stimulation and continuous tracking of single cells over sequential stimuli to profile signaling memory in

macrophages.

(B andC) Representative cells showing live cell imaging of primarymacrophages fromRelAv/v mice overmultiple stimuli. Frames show either 300 ng/mL polyI:C to

10 ng/mL TNF-a or 100 nM CpG to 10 ng/mL TNF-a. Each condition measured over >300 individual cells. Scale bar 50 microns.

(D) CpG and PolyI:C signal transduction pathways.

(E and F) NF-kB responses to different doses of CpG (E) or PolyI:C (F) for 4 h (upper plots) followed by either TNF-a or LPS (lower plots). Single-cell tracemaps

show 100 random traces sorted by the magnitude of maximum activation over 240 min of stimulation. Color indicates normalized nuclear/cytoplasmic ratio on a

linear scale, with 1 being the mean amplitude at the highest dose (stimulus A) or with no prior ligand (stimulus B).
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produce priming and showed weak to no dose dependency

(Figures 2A and 2C).

Generally, memory in macrophages affected subsequent

TNF-a and LPS stimulus similarly, unlike previous reports that

memory in NF-kB dynamics is dependent on overlap between

stimulus pathways in fibroblasts.30,35 TNF-a, however, tolerized

only subsequent TNF-a re-stimulus, which may be due to

pathway-specific negative feedback (Figures 2A and 2B).36

Increasing stimulus duration resulted in a greater magnitude of

tolerance, especially at higher doses (Figures 2B and 2D). How-

ever, PolyI:C priming weakened with longer stimulus duration,

suggesting that maximal PolyI:C priming may take place within

the first 8 h and wane over time (Figure 2B). Our initial screen

thus identifies ligand-specific priming and tolerance in a dose-

and duration-dependent manner.

To understand whether priming and tolerance are encoded

and can be classified on a single-cell level, we measured the

mutual information between different memory-conditioned re-

sponses. Mutual information can be used to quantify the accu-

racy of signal transduction.26,28,30 In this context, mutual infor-

mation between two conditions with the same stimulus but

different prior stimuli indicates the accuracy with which stimulus

response dynamics reflect a cell’s memory state.

Broadly speaking, NF-kB dynamics in single cells can highly

distinguish between prior stimuli. Comparing TNF-a response

after either 4 or 8 h of prior stimulus revealed up to 0.9 bits of

mutual information, which represents near-complete distin-

guishability (Figures 3A and 3B). In particular, the TNF-a

response after polyI:C treatment was highly distinguishable

from naive and other prior stimuli, consistent with polyI:C being

uniquely priming. Other stimuli like IL-1b are largely indistin-

guishable from all other memory conditions, perhaps reflecting

a high intercellular variability in the memory response following

IL-1b. Similarly, LPS response produced variable mutual infor-

mation based on prior stimulus (Figures 3C and 3D). PolyI:C

treatment did not result in notably greater mutual information

A

B

C

D

Figure 2. Stimulus identity, dose, and duration shape innate immune memory to produce both priming and tolerance

(A) Quantified normalized AUC for 10 ng/mL TNF-a response following stimulus A at the indicated dose for 4 h. Dashed black line shows AUC at baseline

(normalized to 1). Open circle shows mean. n > 100 single cells over two independent preparations for each condition. * p < 13 10�2 by Wilcoxon rank-sum test

with Bonferroni correction.

(B) Quantified normalized AUC for 10 ng/mL TNF-a response after 8 h of stimulus A. All notation is the same.

(C and D) Quantified normalized AUC for 1 ng/mL LPS response after 4 (C) or 8 (D) h of stimulus A. All notation is the same as in (A).
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for the LPS response, perhaps due to the weak priming effect on

polyI:C on the LPS response. Instead, the highest doses of LPS

and PAM were strongly distinguished from nearly every other

condition, reflecting the strongly tolerogenic nature of these

stimuli. Taken together, these results show that distinct memory

states can produce highly distinguishable NF-kB response dy-

namics to identical stimuli.

Mutual information can also be calculated using a single

feature of the NF-kB response, which allows us to compare

the information transferred by a dynamic process versus a key

metric. We used maximum response amplitude as a proxy for

response magnitude in each condition and repeated the same

comparisons (Figures 3E–3H). Mutual information based on a

maximum amplitude was significantly lower than that from the

entire trace. The only conditions that remained largely distin-

guishable were LPS following the highest doses of PAM or

LPS, which is consistent with strong tolerance being well

reflected in response magnitude (Figures 3G and 3H). Thus,

NF-kB response dynamics convey essential information about

stimulus memory in single cells, which is lost by reducing the

dynamic response to a single feature.

NF-kB dynamics encodememory of in vivo inflammatory
challenge in peritoneal macrophages
After observing that signaling memory alters NF-kB activation

dynamics in bone-marrow-derived macrophages, we asked

whether acute inflammation in vivo also induces similar mem-

ory effects in tissue macrophages. Murine endotoxin tolerance

is a classic model of innate immune memory where sublethal

endotoxemia protects against lethal rechallenge,10 and the

role of macrophage memory in this phenomenon has been

well described in previous studies.11,12,37 In particular, immu-

nosuppression induced by sepsis is a clinically important phe-

nomenon related to this memory effect.38 We hypothesized

that endotoxin challenge encodes signaling network-level

changes that manifest as altered signaling dynamics to

rechallenge.

We used a mouse model of sublethal endotoxemia via perito-

neal injection of LPS (Figure S3A), followed by isolation and mi-

crofluidic culture of primary peritoneal macrophages from endo-

toxemic and sham-injected mice (Figures 4A and S3B–S3D).

Peritoneal macrophages cultured without stimulus showed min-

imal activation and good adaptability to microfluidic culture

(Figures 4B and 4E). Treatment with TNF-a and LPS revealed

clear differences in NF-kB activation dynamics. While nearly all

macrophages from saline-treated mice activated following stim-

ulation, response to TNF-a is significantly attenuated, and

response to LPS is completely abolished in macrophages from

endotoxin-treated mice (Figures 4C–4E). Endotoxemia also

significantly delayed and increased the heterogeneity in the

time to activation following treatment with TNF-a and LPS (Fig-

ure 4F) and reduced the amplitude of activation (Figure 4G).

We concluded that innate immune memory phenotypes like

endotoxin tolerance can indeed be encoded by adult macro-

phages in the form of altered NF-kB dynamics.

Unlike in bone-marrow-derived macrophages, TNF-a acti-

vation dynamics in peritoneal macrophages showed an

extended activation plateau instead of an activation pulse (Fig-

ure 4C). Endotoxemia attenuated LPS-induced dynamics more

strongly than TNF-a-induced dynamics (Figures 4C and 4D),

while TNF-a was generally more attenuated than LPS in bone-

marrow-derived macrophages (Figure 2). These results suggest

important differences in how inflammatory stimuli are sensed

and converted into NF-kB dynamics in different innate immune

contexts.

Chromatin accessibility dynamics regulate TF targets
following macrophage activation
Having shown that inflammatory memory is mediated through

reshaping the dynamics of NF-kB signaling, we then turned to

how memory changes the intranuclear targets of activated in-

flammatory TFs. Chromatin accessibility rapidly changes after

exposure to inflammatory stimulus,39 and remodeling of pro-

moters and enhancers has been shown to tune the transcrip-

tional response to subsequent stimuli over days to weeks. We

hypothesized that even on the timescale of hours, inflammatory

memory is the product of both modulation of TF dynamics and

chromatin accessibility, which changes the nuclear targets of

that TF (Figure 5A). We performed ATAC-seq to profile acces-

sible chromatin for single and sequential stimulus conditions to

test this possibility.

We observed that CpG and polyI:C treatment produced

distinct changes in chromatin accessibility (Figure 5B;

Table S1). Hierarchical clustering identified regions with

increased accessibility after both polyI:C treatment and CpG

treatment, as well as only after each individually, indicating stim-

ulus-dependent opening of chromatin. Interestingly, all three up-

regulated groups showed enrichment for kB and activated pro-

tein 1 (AP-1) motifs, which are the predominantly activated TFs

downstream of Toll-like receptor (TLR) signaling (Figure 5B;

Table S2). The polyI:C-specific and shared groups were also en-

riched for interferon-stimulated regulatory elements (ISREs),

while the CpG-specific groupwas enriched for CCAAT/enhancer

binding protein (c/EBP) motifs. Thus, these observations corre-

spond with activation of NF-kB, c-Jun N-terminal kinase (JNK),

and p38 signaling by both polyI:C and CpG, while only polyI:C in-

duces an interferon program, as is consistent with the litera-

ture.40 c/EBP activation by CpG has not been described, but

the c/EBP family of TFs coordinates initial responses to inflam-

matory stimuli and controls myeloid differentiation and could

be a target of TLR9 activation.41

We saw enrichment of RelA motifs in regions of polyI:C-spe-

cific, CpG-specific, and shared increased peak accessibility

(Figure 5B). We asked whether regulation of RelA sites by neigh-

boring TFs could explain the different regulatory modes for

one TF motif. Indeed, polyI:C upregulated RelA peaks strongly

Figure 3. Response dynamics to identical stimulus are distinguished by memory of prior stimulus using informational theory

(A–D) Mutual information (MI) calculated from dynamic vector of 20 evenly spaced time points over the 4 h stimulus interval. All conditions compared within one

heatmap are the same stimulus after 4 (A and C) or 8 (B and D) h of ligand A. Ligand A dose ordered from lowest (1) to highest (3 or 4). MI shown in bits, where

1 indicates full distinguishability and 0 indicates indistinguishability.

(E–H) Same MI calculations but from a single feature (maximum amplitude) instead of a dynamic vector.
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co-occur with ISREs (Figure 5C). Likewise, CpG-upregulated

RelA peaks co-occur with c/EBP motifs. The co-occurrence

of AP-1 motifs with RelA is quite similar across all groups

(Figure 5C). These suggest that stimulus-specific tuning of

epigenetic accessibility at RelA binding sitesmay be due to inter-

actions between these binding sites and neighboring, stimulus-

specific TFs and binding sites.

We also asked whether stimulus-induced changes in chro-

matin accessibility can be overwritten by subsequent stimuli.

We profiled chromatin accessibility following sequential stimuli

with polyI:C/CpG to TNF-a/LPS (Table S1) and identified differ-

entially accessible regions (Figures S4A and S4B). Despite the

subsequent TNF-a/LPS stimulus, differentially accessible re-

gions still primarily grouped based on the first polyI:C and CpG

stimulus and were enriched for similar motifs (Figure S4C;

Table S2). Since it appeared that the first stimulus played an

outsized role in determining which regions exhibited differential

accessibility, we asked whether the chromatin landscape in

sequentially stimulated samples more resembled the chromatin

landscape induced by the first stimulus alone (polyI:C/CpG) or

the second stimulus alone (TNF-a/LPS) (Figures 5D and 5E). Cor-

relation between sequential stimuli and the landscape induced

by the first polyI:C/CpG stimulus was generally much stronger

than correlation with the second stimulus landscape. We

concluded that initial stimulus exposure plays a lasting role in

determining the chromatin accessibility landscape for a cell

and is difficult to overwrite by subsequent stimuli.

Overall, these results show that stimulus-induced chromatin

accessibility changes take place on the timescale of hours. We

identify stimulus-specific TF motifs that may cooperatively tune

chromatin accessibility. Finally, we show that initial inflammatory

exposure produces lasting effects that persist even after re-

exposure with another stimulus.

Memory-induced TF and chromatin accessibility
dynamics are encoded into cellular decision-making
Having identified mechanisms of inflammatory memory encod-

ing in both TF activation and chromatin accessibility dynamics,

we finally turned to whether this memory was encoded in the

macrophage transcriptional program. We performed RNA

sequencing for four representative cases, polyI:C or CpG to

TNF-a or LPS, which include both priming and tolerance based

on NF-kB dynamics and distinct chromatin accessibility signa-

tures based on ATAC sequencing. Transcripts were classified

by whether they were synergistically or antagonistically regu-

lated by prior stimulus (Figure 6A; Table S3). Synergistic

A B C

D E F G

Figure 4. In vivo endotoxin tolerance is encoded in adult macrophages through changing NF-kB dynamics

(A) Schematic for endotoxemia and adult macrophage retrieval.

(B–D) NF-kB dynamics in adult peritoneal macrophages from mice injected with PBS or endotoxin. 100 random traces selected from >200 cells (B) or >600 cells

(C and D) over 3 mice/condition.

(B) Baseline NF-kB dynamics.

(C) NF-kB dynamics following 10 ng/mL TNF-a.

(D) NF-kB dynamics following 1 ng/mL LPS.

(E–G) Violin plot of total AUC (E), time to activation (F), or activation amplitude (G) over 4 h for each condition. Open circle shows mean. *p value < 0.01, n.s.

p value > 0.01 by Wilcoxon ranked sum test with Bonferroni correction.
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regulation implies that memory of prior stimulus induces tran-

scription beyond the independent contributions of each stim-

ulus, while antagonistic regulation implies that memory induces

less transcription than the independent contributions of each

stimulus (STAR Methods).

Since NF-kB activation is strengthened following priming and

weakened following tolerance, we expected more antagonistic

genes due to tolerance and more synergistic genes due to

priming. Consistent with our expectations, we only identified

214 synergistically regulated transcripts and 366 antagonistically

regulated transcripts for CpG to TNF-a stimulus, compared with

572 synergistic and 394 antagonistic transcripts for polyI:C to

TNF-a (Figures 6B and 6C). We repeated this analysis for

polyI:C/CpG to LPS and found that polyI:C and CpG induced

similar numbers of synergistic transcripts but that CpG stimulus

produced 30% more antagonistic transcripts (Figures S5A and

S5B). To identify cellular processes associated with synergy

and antagonism, we performed overrepresentation analysis on

selected transcripts. Synergistic transcripts from all conditions

were enriched for immune and inflammatory responses, while

those due to priming were also enriched for NF-kB and TNF

signaling (Figure 6D; Table S4). Similarly, antagonistic transcripts

A

B

C

D

E

Figure 5. Chromatin accessibility is associated with tolerance- and priming-specific memory effects in macrophages

(A) Model of how memory mediates changes in both transcription factor dynamics and targets through chromatin accessibility dynamics.

(B) Heatmap of differential accessibility following CpG or polyI:C stimulus. Groups clustered using theWard algorithm. A subset of enrichedmotifs for each group

is shown on the side. Colors linearly scaled.

(C) Fraction of differentially open RelA peaks (MA0107.1) that share Irf3, 8, and 9 motifs (MA0652.1, MA0653.1, and MA1418.1), c/EBP b and gmotifs (MA0838.1

and MA0466.1), or Fos and Jun motifs (MA0476.1 and MA0488.1).

(D) Scatterplots comparing fold-change in accessibility for upregulated regions after 4 h of CpG or polyI:C and 4 h of TNF-a to the same regions following 4 h of

CpG or polyI:C only or 4 h of TNF-a only. Spearman correlation coefficient for each comparison shown above.

(E) Same as (D), except following 4 h of CpG or polyI:C and 4 h of LPS compared with 4 h of CpG or polyI:C only or 4 h of LPS only.

ll
Article

8 Cell Systems 16, 1–16, February 19, 2025

Please cite this article in press as: Wang et al., Macrophage memory emerges from coordinated transcription factor and chromatin dynamics, Cell
Systems (2025), https://doi.org/10.1016/j.cels.2025.101171



A C D

B

E

F H

I

G
J

K

Figure 6. Gene expression profiling reveals distinct transcriptomic changes due to tolerance or priming

(A) Approach for determining memory-based synergy and antagonism in gene expression.

(B) Heatmaps of synergistically or antagonistically upregulated genes for CpG to TNF-a. RNA-seq was performed in triplicate, and each row is one gene.

(legend continued on next page)
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from all conditions were enriched for cell adhesion and signal

transduction, but those associated with tolerance weremore en-

riched for NF-kB and TNF signaling (Figure 6E; Table S4). Taken

together, these results suggest that while memory globally in-

creases transcription of a subset of genes associated with in-

flammatory signaling, genes specific to NF-kB and TNF signaling

are synergistically regulated by priming but antagonistically

regulated by tolerance.

Since we observed increased chromatin accessibility at

distinct sites following stimulus, we hypothesized that chromatin

accessibility accounted for a subset of transcriptional outcomes

in synergy and antagonism as well. Namely, NF-kB and AP-1

should be involved in regulating both polyI:C- and CpG-induced

memory, while signal transducer and activator of transcription

(STAT) and interferon regulatory factors (IRFs) should regulate

polyI:C-induced memory, and c/EBP TFs should regulate

CpG-induced memory. We used the ChEA3 algorithm to identify

TFs predicted to be associated with synergistic and antagonistic

transcriptional regulation based on published ENCODE chro-

matin immunoprecipitation sequencing (ChIP-seq) data.42 Syn-

ergistic transcripts for both polyI:C and CpG stimulus shared a

large fraction of enriched TFs, including the expected NF-kB

(RelA) and AP-1 (Jun and JunD) family TFs, but also interferon-

related TFs (Stat1 and Stat2) (Figure 6F). These TFs were gener-

ally more enriched following polyI:C priming, consistent with the

more synergistic regulation of transcription with priming. By

contrast, antagonistic transcripts largely did not share enriched

TFs, with CpG-specific TFs including many of those involved in

NF-kB and JNK signaling (Figure 6G). Additionally, Cebpb, a

c/EBP TF, was indeed overrepresented for CpG-induced syn-

ergy and antagonism. These results suggest that CpG-induced

synergy and antagonism in different subsets of genes regulated

by the same TFs. Applying the same overrepresentation analysis

to the polyI:C or CpG to LPS conditions also showed shared TFs

among the synergistic genes and more distinct TFs among

antagonistic transcripts (Figures S5C and S5D).

We then tested our hypothesis that synergistic gene expres-

sion is associated with increased accessibility at chromatin sites

in the promoter region for these genes. We identified genes with

upregulated promoter and proximal enhancer peaks (± 3,000 bp

from the transcriptional start site) following polyI:C or CpG stim-

ulus and found that genes synergistically regulated by memory

were more likely to have increased promoter accessibility

following both polyI:C and CpG stimulus (Figure 6H). Thus, chro-

matin accessibility contributes to regulating synergy and antag-

onism in transcription.

From our ATAC findings, we identified TF motif ‘‘signatures’’

that co-occurred in sites of increased accessibility following

polyI:C priming (NF-kB, AP-1, and ISRE) and CpG tolerance

(NF-kB, AP-1, and c/EBP). Using transcriptional data, we found

that the co-occurrence of these motifs also corresponds to syn-

ergistic regulation of gene expression. For example, Ifi44 primar-

ily contains RelA and ISRE motifs in the promoter region and is

synergistic for polyI:C to TNF-a stimulation (Figure 6I). Cp con-

tains RelA and c/EBP motifs and is synergistic for CpG to

TNF-a (Figure 6J). Traf2 is synergistic for both conditions and

contains RelA and AP-1 motifs (Figure 6K). Interestingly, the TF

signature for CpG tolerance was overrepresented in both syner-

gistic and antagonistic transcriptional regulation (Figures 6F and

6G), which suggests that this set of TFs may be associated with

both up- and downregulation of target genes. To profile which

expression programs are turned on and off by tolerance, we

looked at cellular processes associated with the 96 synergistic

and 325 antagonistic transcripts regulated by at least one of

these seven shared TFs. We found that synergistic transcripts

were enriched for IFN-g signaling and proliferation, while

antagonistic transcripts were enriched for metabolism, NF-kB

signaling, and mitogen-activated protein kinase (MAPK)

signaling (Figure S6E). Although IFN-g is not expressed by our

BMDMs, the IFN-g GO term may reflect Stat1/2 activation by

type I interferons (Figure 5B; Table S4). Thus, memory may

‘‘fine-tune’’ TF activity to synergize particular gene programs

and antagonize others.

Coordinated TF dynamics and chromatin accessibility
enable signaling memory and gene expression control
Based on our observations that memory-dependent changes in

both TF dynamics and chromatin accessibility corresponded to

synergistic and antagonistic gene regulation, we hypothesized

that combining chromatin and NF-kB dynamics features could

predict transcriptional regulation. We trained a convolutional

neural network that integrated 133 chromatin accessibility fea-

tures, including peak accessibility and associated motifs, and

48 features of TF dynamics, to classify gene expression into

downregulated, unchanged, upregulated, and highly upregu-

lated bins in response to any one of 8 stimulus conditions

(Figures 7A and S6). This classification challenge is not trivial,

as most deep learning approaches to predicting gene expres-

sion are only able to classify cell-type-specific gene expression

signatures from chromatin signatures at steady state.43,44

Here, we seek to predict perturbation-specific gene expression

changes in a single-cell type based on changes in accessibility

and activity. Our resultant multilayer perceptron model classifies

gene expression with 72.8% accuracy, an improvement of

over 30% from random assignment (Figures 7B and 7C). Impor-

tantly, our model predicts stimulus-dependent changes in gene

(C) Same as (B) for polyI:C to TNF-a. Colors linearly scaled in both heatmaps.

(D and E) p values from overrepresentation analysis of synergistic (D) or antagonistic (E) genes for the indicated treatment conditions. Gene sets from either GO:

BP or KEGG databases. Size of circle corresponds to adjusted p value.

(F) Scatterplot of overrepresented TFs from synergistically regulated genes following either CpG to TNF-a (CT) or polyI:C to TNF-a (PT). Top 10 TFs for each

condition colored based on whether they are overrepresented for PT (blue), CT (red), or both PT and CT (purple). Enrichment p values based on ChEA3 using the

ENCODE TF target library.

(G) Same as (F) for antagonistically regulated genes following either CT or PT.

(H) Barplot showing fraction of synergistic or antagonistic transcripts for each treatment condition with increased promoter accessibility following polyI:C or CpG

treatment.

(I–K) Tracks from RNA-seq (media, gray; P/T, blue; and C/T, red) and ATAC-seq (media, gray; polyI:C, blue; and CpG, red) for synergistic genes in P/T (I),

C/T (J), or both (K). RelA motifs (black), Irf3 and Irf8 motifs (blue), c/EBPgmotifs (red), and Fosmotifs (purple) shown below tracks. Called peaks shaded in gray.
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Figure 7. Deep learning based on dynamic variation in chromatin accessibility and transcription factor activation predicts transcriptional

regulation

(A) Structure for neural network used to predict gene expression.

(legend continued on next page)
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expression. We identified 16 genes that displayed the same reg-

ulatory pattern following stimulation with LPS, TNF-a, and LPS or

TNF-a after polyI:C. Despite the variability in transcriptional

regulation depending on stimulus, the majority of these 16 genes

were successfully predicted by our model (Figure 7F). Thus, in-

formation from dynamic changes in chromatin accessibility

and TF activity was sufficient to identify characteristics of mem-

ory-based gene regulation.

We noticed that both the chromatin accessibility and TF acti-

vation data were necessary for the most accurate prediction of

gene expression. Amodel using only NF-kB activation data clas-

sified gene expression with only 61.8% accuracy, doing particu-

larly well at predicting upregulated genes (group 3), but entirely

failing to predict downregulated (group 1) or highly upregulated

(group 4) genes (Figure 7D). By contrast, the chromatin accessi-

bility-based model was comparably more effective at predicting

groups 1 and 4while less effective at distinguishing group 3, with

an overall accuracy of 64.7% (Figure 7E). Thus, both TF activa-

tion dynamics and chromatin state provide necessary informa-

tion for the classification of memory-induced transcriptional

control.

We then sought to simplify the model and identify the fea-

tures that were most important for accurate gene expression

prediction. In particular, we sought to narrow the list of 18

TF motifs down to 4 motifs that were most important for pre-

dicting gene expression as a way of understanding key TFs in

the gene regulatory network. Motifs that are more important

for accurate prediction are more likely to be involved in biolog-

ical regulation of gene expression in inflammation and inflam-

matory memory. RelA was enriched in all the most accurate

motif combinations, consistent with our observation of RelA

signaling dynamics and motif involvement in chromatin reor-

ganization and transcription (Figure 7G). In addition, ISREs

(STAT1::STAT2, IRF3, IRF7, and IRF9), AP-1 motifs (Fos),

and c/EBP motifs (c/EBPD) were all highly represented in mo-

tifs with high predictive accuracy, suggesting that these motifs

are important for regulation of transcription. The accuracy of

prediction using only this subset of chromatin accessibility

and TF motif data was reduced compared with the full chro-

matin model at only around 51% accuracy for the best motifs

(Figure 7H) but still was significantly greater than random

assignment. This finding demonstrated that these motifs

both exhibit dynamic regulation under evolving inflammatory

stimuli and are important mediators of gene expression them-

selves. Altogether, our deep-learning model showed that a

combination of TF dynamics and chromatin accessibility fea-

tures are necessary and sufficient to predict gene regulation

with high accuracy.

DISCUSSION

In this work, we study the role of two distinct molecular mecha-

nisms that combine to create transcriptional memory in macro-

phages: reprogramming of the NF-kB signal transduction

network and remodeling of chromatin architecture. We discover

that these mechanisms synergize to create and regulate tran-

scriptional responses to future challenges based on memory

of past exposure. Systematically profiling the effect of ligand

identity, dose, and duration on memory in individual primary

macrophages, we show that both priming and tolerance can

be encoded in NF-kB activation dynamics. By building a deep-

learning model based on measured NF-kB dynamics and mem-

ory-induced changes in gene expression, we successfully pre-

dict transcriptional responses to different stimulus patterns

and show that both facets of memory encoding are vital for

gene expression (Figure 7I).

We describe NF-kB dynamics in primary peritoneal macro-

phages, adding to a limited literature on inflammatory signaling

dynamics in adult primary cells.28,32,33,45 Interestingly, we find

distinct differences between both the patterns of dynamics in

peritoneal macrophages compared with BMDMs and in the

way memory affects TNF-a and LPS signaling in each cell

type. These differences are suggestive of fundamental differ-

ences in how signal transduction takes place in these cell types,

despite their apparent similarity. In addition, the complex physi-

ological context of endotoxemia may shape memory differently

from in vitro stimulation due to cell-cell interactions and other

factors. Further investigation into signaling dynamics in different

cell types and contexts would likely reveal heretofore unappreci-

ated subtleties in how cell types and contexts tune inflammatory

signaling.

By identifying the contribution of altered NF-kB dynamics to

memory, we show that remodeling of signaling networks can

play a role in both tolerance and priming. Unlike adaptive im-

mune memory, which is encoded in genomic variability and

DNA-level changes, it is well established that changes in the

epigenetic landscape, whether through histone modification

or chromatin accessibility, encode innate immune memory

through altering TF targets in the nucleus.8,11,12 However,

we demonstrate that, upstream of TF binding, TF activation

dynamics can be rendered inactive or enhanced based on

priming and tolerance by prior stimulus. In particular, priming,

(B) Heatmap of model prediction accuracy for gene expression in each of four classes of regulation. Overall accuracy across all genes provided below. 1

corresponds to downregulated, 2 corresponds to unchanged, 3 corresponds to upregulated, and 4 corresponds to highly upregulated.

(C–E) Heatmap of model prediction for variations of our optimal neural network.

(C) Random assignment without prediction.

(D) Prediction using only NFkB translocation features.

(E) Prediction using only chromatin accessibility and motif features.

(F) True and predicted expression patterns for 16 representative genes with variable regulation depending on condition. 11/16 genes are perfectly predicted

across 4 conditions, with all genes being correctly predicted in at least 2 conditions.

(G) Quantification of the most important TF motifs for predicting gene expression. Out of 3,028 different combinations of 4 motifs, the top 10 most accurate motif

predictors are enriched for RelA, Stat1/Stat2, Irf1, Jun, Fos, and c/EBPD motifs.

(H) Heatmap of model prediction using only ATAC features associated with the best (RelA, Fos, Irf7, and Irf8) and second-best (RelA, Fos, c/EBPD, and Stat1/

Stat2) 4 motif combinations. Colors linearly scaled in all heatmaps.

(I) Summary model: feedback-encoded memory in the signaling network and chromatin-encoded memory combine to produce transcriptional outcomes.
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which was previously thought to take place entirely epigenet-

ically, also acts through enhancing signaling dynamics.24 Our

predictive model demonstrates that the information encoded

in altered NF-kB dynamics is crucial for predicting the cell’s

transcriptional response. It is striking that the dynamics of a

single TF can play such a role in informing transcriptional

behavior, and including the dynamics of other key TFs such

as the IRFs, STATs, and c/EBPs will likely further contextu-

alize transcriptional decisions. Network-level targeting to

modify signaling dynamics presents a possible avenue for

therapeutic modulation of innate immune memory in patho-

logic states.

Innate immunememory on the timescale of hours is physiolog-

ically critical due to rapid cytokine changes in acute inflammation

and the early role of the innate immune response in inflammatory

response.46,47 However, memory has primarily been studied

over days to months. We show, in a mouse model of sublethal

endotoxemia, that peritoneal macrophages undergo extremely

rapid changes in cell state, rendering them entirely tolerant to

LPS re-stimulus after only 4 h of endotoxemia. Further study of

innate immune memory in the early response to acute inflamma-

tion and infection will likely reveal further adaptation andmemory

at this timescale.

Our work demonstrates comprehensively that signaling mem-

ory is mediated by both network and chromatin remodeling and

can be deterministic in single cells but has been largely conduct-

ed in an in vitro model of inflammatory signaling. We show the

in vivo relevance of network remodeling and altered signaling dy-

namics in a model of murine endotoxemia, but further study of

macrophage signaling memory under acute and chronic inflam-

matory stimuli is warranted. This work would link macrophage

signaling dynamics and memory to highly relevant disease

states.

Profiling of signaling dynamics throughmultiple pathwaysmay

also provide increased insight for signaling memory from inflam-

matory stimulus. While there is a large body of work on dynamics

in the NF-kB pathway and their relevance for inflammatory

signaling, we propose a broader model where network remodel-

ing at the level of signaling pathways adjusts the flux of signal

passing into the nucleus. This process likely takes place in other

contexts like the MAPK and interferon pathways as well and is

worthy of study.
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse models
Endogenously-tagged mVenus-RelA (RelAV/V) C57BL/6J mice28 were housed and bred in specific pathogen free conditions at the

University of Chicago or the University of California, Los Angeles. All experiments were performed in accordance with the NIH Guide

for the Care and Use of Laboratory Animals and approved by the University of Chicago or UCLA Institutional Animal Care and Use

Committees.

Cell lines
Bone-marrow derivedmacrophages (BMDMs) were differentiated and cultured in RPMIwith 10%heat-inactivated FBS (Omega), 1%

penicillin/streptomycin (Lonza, Corning), 1% NEAA (Corning), 1% HEPES (Gibco, Corning), 1% sodium pyruvate (Corning), 1%

L-glutamine (Fisher, Corning), 0.1% b-mercaptoethanol (Gibco) (complete media) supplemented with 20 ng/mL recombinant murine

m-CSF (Peprotech). Isolation and culture described in method details.

Peritoneal macrophages (PMPs) were cultured in complete media. Isolation described in method details.

METHOD DETAILS

Reagents
Ultrapure lipopolysaccharide from E. coli O111:B4 (LPS) (Invivogen), PAM2CSK4 (PAM) (Invivogen), ODN 1668 (CpG) (Invivogen),

HMW polyinosinic-polycytidylic acid (polyI:C) (Invivogen), murine tumor necrosis factor alpha (TNFa) (R&D Systems), murine inter-

leukin 1 beta (IL-1b) (R&D Systems), and murine m-CSF (Peprotech) were reconstituted in ultrapure water, aliquoted, and stored

at -80C until individual aliquots were used.

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Ultrapure lipopolysaccharide from E. coli O111:B4 Invivogen tlrl-3pelps

PAM2CSK4 Invivogen tlrl-pm2s-1

ODN 1668 Invivogen tlrl-1668

HMW polyinosinic-polycytidylic acid Invivogen tlrl-pic

Murine tumor necrosis factor alpha R&D Systems 410-MT-010/CF

Murine interleukin 1 beta R&D Systems 401-ML-010/CF

Murine m-CSF Peprotech 315-02-10UG

Human fibronectin R&D Systems 1918-FN

Critical commercial assays

Macrophage Isolation Kit (Peritoneum), mouse Miltenyi Biotec 130-110-434

Nextera XT DNA Library Preparation Kit Illumina FC-131-1024

NextSeq 500/550 high output kit v2 Illumina 20024906

Deposited data

RNA seq data reported in this paper This study GEO: GSE260996

ATAC seq data reported in this paper This study GEO: GSE261647

Single cell NFkB trace data reported in this paper This study https://doi.org/10.5281/zenodo.14337874

Experimental models: Organisms/strains

RelAmVenus/mVenus (C57BL/6) Adelaja et al..28 Immunity mVenus-RelA

Software and algorithms

MATLAB 2023b MathWorks http://mathworks.com

R R Foundation https://www.r-project.org/

Python Python Python.org

Original code This study https://doi.org/10.5281/zenodo.14337874

ll
Article

e0 Cell Systems 16, 1–16.e1–e3, February 19, 2025

Please cite this article in press as: Wang et al., Macrophage memory emerges from coordinated transcription factor and chromatin dynamics, Cell
Systems (2025), https://doi.org/10.1016/j.cels.2025.101171

https://doi.org/10.5281/zenodo.14337874
http://mathworks.com
https://www.r-project.org/
https://doi.org/10.5281/zenodo.14337874


Induction of endotoxemia
6-8 week old male and female RelAV/V mice were injected intraperitoneally with PBS, LPS, or polyI:C at the indicated doses diluted in

PBS. Immediately prior to injection and 4, 8, 24, and 48 hours post-injection, weight and core body temperature were recorded. For

extraction of peritoneal macrophages, mice were euthanized by CO2 asphyxiation 4 hours post-injection.

Cells
Bone-marrow derived macrophages (BMDMs) were prepared by culturing bone marrow cells isolated from the femurs and tibias

of 6-12 week old male and female RelAV/V mice in complete media supplemented with 20 ng/mL m-CSF. BMDMs were fed on

days 2, 4, and 6 with additional complete media supplemented with m-CSF. On day 7-9, adherent BMDMs were washed with PBS

and lifted fromculture dishwith 10mMEDTA (Fisher) in PBS (Gibco) and either replated inwell plates or loadedontomicrofluidic devices

depending on use.

Peritoneal macrophages (PMPs) were isolated from the peritoneal cavities of 6-8 week old male and female RelAV/V mice by peri-

toneal lavage with ice cold PBS containing 1% FBS and 2mMEDTA. PMPs were isolated from the resultant peritoneal cells by nega-

tive selection using a Macrophage Isolation Kit (Peritoneum) (Milyenyi) in the MACS MS system (Milyenyi). Peritoneal macrophages

were cultured in complete media for subsequent uses.

Microfluidic device fabrication
Silicon wafer master molds for a previously published microfluidic device29 were used for this study. This device allows independent

stimulation of 64 cell culture chambers with any of 14 inputs. Each chamber loads up to 1000 cells. Multilayer polydimethylsiloxane

(PDMS) microfluidic device fabrication largely followed previously published protocols.48 Briefly, 10:1 ratio of PDMS (Momentive)

monomer to catalyst was mixed and poured over to form a control layer or spin-coated at 2200 rpm to form a fluid layer, and cured

at 80�C. The control layer was cut out and bonded to the fluid layer using oxygen plasma followed by overnight baking at 80�C. Control
and input holes were punched, and the device was bonded to a pre-cleaned glass slide using oxygen plasma and baking.

Microfluidics enabled live-cell imaging
Device control valves were connected to electronically actuated pneumatic solenoid valves which can be controlled using a custom

graphical interface or pre-written scripts (MATLAB). The devicewasmounted on an epifluorescencemicroscope (Nikon) and cell cham-

bers were filled with a 0.2-0.4 mg/mL fibronectin solution (Thermo Fisher, R&D Systems) in PBS overnight. All paths on the microfluidic

device were then flushed with complete medium to remove the fibronectin and the live imaging apparatus (Life Imaging Services) was

set to 37�C, 5%CO2, 98% humidity to optimize cell growth conditions. As previously described, BMMPs or PMPswere isolated in sus-

pension, pelleted (5 min, 400 xg), and resuspended at a concentration of 107/mL in complete media with phenol red-free RPMI (Gibco)

to minimize background fluorescence. Cells were loaded into the microfluidic device and allowed to attach. To stain nuclei for cell

tracking 1 hour prior to the start of the experiment, cells were treated with 1 mMHoechst 33342 in complete media for 5 minutes before

washing with complete media. No Hoechst induced cell-death or morphological changes were observed over the 12-16 hours of im-

aging using the conditions described below. Cells were imaged at 6minute intervals at 20xmagnification using a Nikon Ti2microscope

and imageswere recordedon aHamamatsu, ORCA-Flash4.0 V2camera. Eachpositionwas imaged formVenus-RelA (508-nm, 1 s) and

Hoechst (395-nm, 50 ms). No photobleaching or phototoxicity was observed over the course of the imaging process.

Microfluidic stimulation
Previously described reagents were diluted from stock solutions in completemedia (supplementedwith 20 ng/mLm-CSF for BMMP).

Eachmicrofluidic experiment included at least two positive controls (completemedia to 10 ng/mL TNFa, 1 ng/mL LPS) and one nega-

tive control (complete media only) to ensure comparability and no cross contamination. Ligand doses were chosen to capture

1-1.5 log variation in reagent concentration over a dynamic range of BMMP responsiveness. Ligand were diluted immediately prior

to use, stored on ice over the duration of the experiment, and delivered to the device using polyetheretherketone tubing (VICI). Input

pressure was maintained at 4 psi to minimize cell shearing during feeding. For cytokine blocking experiments, stimulus A was pro-

videdwith excess receptor in completemedia, followed by stimulus B in completemedia without receptor. Other details can be found

in our previous published methods.48 All experiments were done in at least biological duplicate with two independent preparations of

cells from different mice on different days.

Measurement of bulk RNA-seq expression
BMMP were replated in 24-well plates at 150,000 cells/well in complete media supplemented with 20 ng/mL m-CSF and allowed

to rest overnight. Media was aspirated and Stimulus A in complete media and m-CSF added. After 4 hours, Stimulus A was

aspirated and Stimulus B in complete media and m-CSF added. After another 4 hours, stimulus B was aspirated and cells lysed

using RLT buffer (Qiagen) + 1% b-mercaptoethanol. RNA was extracted using Dynabeads (Invitrogen), reverse transcription

was performed using Maxima HMinus RT (Thermo Fisher) with a poly-dT oligo and a template switching oligo (5’ -AA

GCAGTGGTATCAACGCAGAGTGAATrGrGrG -3’) followed by one cycle of second strand synthesis using KAPA HiFi (Roche,

primer: 5’-AAGCAGTGGTATCAACGCAGAGT-3’) and purification with Ampure XP beads (Beckman Coulter). Library prep was per-

formed following the Nextera XT procedure. Mean fragment length was between 400-600 bp for each sample. Libraries were

sequenced on the NextSeq550 platform (Illumina) using the NextSeq 500/550 high output kit v2.
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Measurement of chromatin accessibility using ATAC-seq
Bone-marrow derived macrophages (BMDMs) were prepared by culturing bone marrow cells isolated from the femurs and tibias of

6-12 week old mice in complete media supplemented with 20 ng/mL m-CSF and fed on 2, 4, and 6 with additional complete media

supplemented with m-CSF as described above. On day 7, adherent BMDMs were washed with PBS and lifted from culture dish with

10mMEDTA (Fisher) in PBS (Gibco) and replated at 7.5X105 cells per well in 6-well plates. The following day BMDMswere stimulated

with LPS (1ng/mL), CpG (100nM), polyI:C (1mg/mL), or TNF (10ng/mL) as indicated.

ATAC was performed as preciously described.49 Briefly, cells were lifted in with Accutase (ThermoFisher) and gentle cell scraping.

5x104 cells were utilized to prepare nuclei. Cells were lysed by using cold lysis buffer at 10mM Tris-HCL pH 7.5, 3mMMgCl2, 10mM

NaCl, and 0.1% IGEPAL CA-630. Centrifugation for 10 minutes at 500 3 g and suspension in the transposase reaction mixture

allowed pelleting of nuclei (25 ml of 2X TD Buffer (Illumina), 2.5 ml of TD Enzyme 1 (Illumina), and 22.5 ml of nuclease-free water).

We performed transposase reaction for 30 minutes at 37 �C in a shaker at 800RPM, and purified the fragmented DNA using

MinElute PCR purification kit (QIAGEN). These fragments were amplified by PCR to create ATAC-seq libraries (Illumina Nextera

sequencing primers were used). Libraries were purified using MinElute PCR kit (by Qiagen). Qubit dsDNA high sensitivity assay

kits by Thermo Fisher were used to quantify the libraries, which were then pooled and sequenced on the Illumina NovaSeq SP to

generate 50bp paired end reads.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image analysis and trace processing
Images were exported to MATLAB 2021a for processing and single cell analysis using custom code. Flat field and dark frame cor-

rections were applied to images. Individual cell nuclei were segmented using Hoechst images and tracked over successive frames.

Background fluorescence was quantified frommean intensity of regions of each image without cells and subtracted from the respec-

tive frame. Nuclear segmentation was used to identify median nuclear fluorescence in each frame and normalized to median cyto-

plasmic fluorescence. The resulting traces were processed to remove cells which undergo death, division, or other sources of error.

Cells were tracked with >99% accuracy over up to 8-hour intervals (Video S3)

Each trace was normalized to the mean nuclear/cytoplasmic ratio from the two frames prior to the interval of interest. For BMMPs,

AUCwas calculated by trapezoidal approximation, and early and late AUCwere defined by AUC in the first and last 20 frames (120mi-

nutes). Maximum amplitude was identified by finding the index of maximum amplitude from a smoothed trace (loessmethod, 3 frame

interval, minimum prominence 0.1) to reduce noise, then identifying the nuclear/cytoplasmic ratio for that index in the unsmoothed

trace. Peak timing was identified by finding the frame at which a trace first reaches its half-maximal amplitude. For all BMMP exper-

iments, stimulus B (TNF or LPS) AUC and amplitude were normalized to the naı̈ve response to the same stimulus. For PMPs, traces

were first smoothed (loess method, 5 frame interval) to reduce the noise due to the small size and movement of PMPs. AUC was

calculated by trapezoidal approximation from the smoothed trace and the upper and lower 5% of cells were discarded. No other

processing was done unless otherwise noted.

Pairwise mutual information analysis
We used the methods for mutual information calculation developed by Jetka et al.50 Every other point from the dynamic trace ob-

tained frommicroscopy were extracted and used as an input for calculation of mutual information. The mutual information I between

the responses R from a pair of samples S can be calculated as the difference between the entropy H of the entire response (non-

conditional entropy) and the sum of entropies from the responses specific to each sample:

IðR; SÞ = HðRÞ -- HðRjSÞ
I describes the reduction in entropy, or uncertainty, in identifying the sample which a response belongs to due to observing the

response. Thus the mutual information can be thought of as representing the ‘‘distinguishability’’ between two sample responses.

This calculation of mutual information assumes the probability of a response coming from each sample is 0.5 and can vary from

0 (indistinguishable) to 1 bit (entirely distinguishable). Additional information about the calculation of mutual information can be found

in the original publication.50

RNA sequencing analysis
Adapter trimming and readmapping to the reference genome (GRCm38) was done using STARwith default parameters.51 Transcript

abundance was quantified using the R package featureCounts.52 Differential gene expression were identified using the R packages

edgeR and limma.53,54 Differential genes (DEGs) were identified compared to naı̈ve macrophages using the cutoffs of Benjamini-

Hochberg false discovery rate (FDR) < 0.01 and fold change > 1. Visualization of DEGs in the NF-kB pathway (KEGG: mmu04064)

between polyI:C and CpG treatment accomplished using the R package Pathview.55 We defined synergistic and antagonistic

gene regulation by memory in all DEGs using the following equation:

DABmemory =
AB � ðB+DAB+DBÞ

ðB+DAB+DBÞ
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DABmemory > 0:25 = Synergy; DABmemory < � 0:25 = Antagonism

Here, we compare the gene expression due to sequential stimulus of ligand A and B (AB) to the expected gene expression if the

effects of A andBwere independent normalized (the ‘‘null hypothesis’’) by the expected gene expression. The expected gene expres-

sion term is shown as the gene expression from naı̈ve, media treated cells (B) plus the change in gene expression from treatment with

ligand A followed by media (DAB) plus the change in gene expression from treatment with ligand B only (DB). If DABmemory was 25%

greater than expected, we considered it synergy, and if DABmemory was 25% less than expected, we considered it antagonism.

GO and KEGG overrepresentation analysis on groups of synergistic and antagonistic genes was performed using gProfiler.56

Enriched TFs were identified using the ENCODE ChIP-seq database in ChEA3.42

ATAC sequencing analysis
ATAC-seq reads were aligned to themm10 genome using bowtie2 version 2.2.557 with default parameters except –very-sensitive and –

non-deterministic options and were filtered based on mapping score (MAPQ >30) by Samtools version 1.9.58 Duplicated reads were

removed by Picard MarkDuplicates (version 2.18.29). MACS3 (version 3.0.0b159 ) was used to identify peaks for each sample individ-

ually with default settings except FDR of 0.01, -f BAMPE, -g mm, and –nomodel. Peaks from all samples were merged into a single file

using iterative overlap peak merging as described in Corces et al.,60 and all raw peaks quantified using featureCounts.52 Peaks were

normalized, and differentially open chromatin sites compared tomedia control were identified using edgeR and limma.53,54 Open peaks

were annotated using the R package ChIPseeker61 and enriched transcription factor binding motifs identified from the JASPAR2022

database62 using the R package monaLisa.63 All TFs with logFC enrichment > 1 were considered significant (complete list of enriched

TFs can be found in the supplemental information). Genomic tracks were visualized using the R package Rtracklayer.64

Deep learning model construction and validation
To evaluate how accurately the deep learning algorithm can evaluate the gene expression changes by the different stimulus se-

quences and how much information is encoded at different stages of signal transduction, we first sorted data from NF-kB response,

RNA-, ChIP-, and ATAC-sequencing and arranged them in a large table. In the table, each row indicates a specific gene in different

stimulation condition, while columns contain the data from various measurements and motif analysis. Briefly, in the proximal and

distal promoter region of each gene (-1500 to +500 bp from the TSS or -3000 to -1500 and +500 to +3000 bp from the TSS), the three

most proximal ATAC peaks were selected and the number of binding motifs for 18 different transcription factors were recorded for

each peak. We also included motifs for chromatin regulators which do not interact with specific motifs (EZH2, HDAC, NELFE) which

were located in the promoter region. After inclusion of these data from ATAC, ChIP-seq, andmotif analyses, the features from NF-kB

response dynamics, such as peak height, area-under-curve, and activation time, for each stimulation condition were also evaluated

and added to the table. The table now contains multifaceted data from both nucleic and cytosolic measurements, and was used as

inputs to a multi-layer perceptron (MLP) neural network.65 Through this neural network, we linked the arranged inputs to the gene

expression changes measured from RNA-sequencing. To enable this, the gene expression data was classified into 4 distinct groups

based on the change from the control (fresh medium/fresh medium stimulation). For each gene in each stimulation condition (i.e., for

each row entry in the table), if the expression was reduced to less than 0.66 of the control level, it was considered as ‘‘downregu-

lated’’. If the expression was between 0.87 and 1.5-fold of the control, the gene was considered ‘‘not significantly changed’’ by

the specified stimulation. Similarly, 3- to 10-fold increase was considered ‘‘significantly upregulated’’, and 20-fold increase or

more was ‘‘considered highly upregulated.’’ This classification served as an output of neural network, and utilized to evaluate the

accuracy of the neural network. We utilized TensorFlow platform to build and optimize the neural network.66 The constructed

MLP network had two or three layers between the input and output layers, where inputs were each row entry from the arranged table

and outputs were the 4 classifications based on gene expression changes. The first layer of MLP always had same number of nodes

as the number of input variables, while the second or third layer had either half or quarter of nodes from the first layer. After each layer

10% of the connections were dropped, we used ReLu for all activation functions, and ‘Adam’ method was used for all optimization.

To accurately capture the overall performance of the neural network, the 8,894 samples were randomly divided into 5 sub-groups for

5-fold cross-validation. For each train dataset, the best fit MLP model and its prediction for test dataset were evaluated. These pre-

dictions from all 5-fold cross-validation were combined into one output column to calculate the accuracy of the overall fitting and

model prediction. In other words, for each gene in each condition, we extracted the predicted value of the model only when the

gene was used as a test data. After evaluating the accuracy of the model with all data included, we also calculated its accuracy

when only subset of input data is used (Figures 7C–7E). These trials with subsets would elicit the correlation between the reactions

at specific stage of signal transduction and the gene expression changes. For example, we only used the data from NF-kB translo-

cation dynamics as inputs to neural network to evaluate the mutual information between the cytosolic signal transduction pathway

and gene expression output (Figures 7C–7E). Additionally, we used only the TF motif and ATAC data to investigate which TF or com-

bination of TFs has most information about the gene expression changes by the sequential stimulations (Figures 7F and 7G).
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